特集論文

集中巻モータの非対称ロータ構造による 出力密度向上

高橋朋平* Tomohira Takahashi 北尾純士[†] Junji Kitao 深山義浩[†] Yoshihiro Miyama

Power Density Improvement of Concentrated Winding Motor Using Asymmetric Rotor Structure

要 旨

モータは,産業機器,自動車,鉄道,家電等の様々なア プリケーションに適用されている。また,どのアプリケー ションでも,モータに要求する出力密度(体格に対する出 力の大きさ)は年々増加傾向にある。しかしながら,その ようなアプリケーションの中でも,両回転方向に同等の モータ出力密度を要求するアプリケーションがある一方で, 一回転方向にだけ高いモータ出力密度が要求されるアプリ ケーションもある。

今回,後者のアプリケーションの要求に対応するため,

ー回転方向の出力密度向上に特化した非対称ロータ構造の モータを開発した。独自の非対称空隙スリットを設けるこ とによって、特定の回転方向で、対称ロータ構造に比べ て高いトルクを発生させる磁気回路を実現した。さらに、 油-水熱交換器を備えた油を用いた高効率な冷却構造に よって、磁気特性が高いものの高温での使用ができなかっ た磁石の使用を可能にした。結果として、世界最高クラス のモータ出力密度23kW/Lを達成した。

非対称ロータ構造

様々なアプリケーションに適用されるモータの中には、一回転方向だけの特性が求められるモータが存在する。三菱電機は特定の回転方向で 出力性能を特化させた非対称ロータ構造のモータを開発した。この構造はロータコアの中に非対称空隙スリットを設けることで、対称ロータ構 造に比べて高いトルクを発生させる磁気回路を構築し、世界最高クラスのモータ出力密度を実現した。

1. まえがき

モータは,産業機器,自動車,鉄道,家電等の様々なア プリケーションに適用されている。どのアプリケーショ ンでも,アプリケーション自体を小型化・軽量化するた め,モータに要求する出力密度(体格に対する出力の大き さ)は年々増加傾向にある。しかしながら,そのようなア プリケーションの中でも,両回転方向に同等のモータ出力 密度を要求するアプリケーションと,一回転方向にだけ高 いモータ出力密度が要求されるアプリケーションがある。

本稿では、後者のアプリケーションの要求に対応可能で ある、一回転方向にだけ高いモータ出力密度を実現する非 対称ロータ構造の検討内容について述べる。初めに、出力 密度を向上させるために重要な、モータのトルクと誘起電 圧について述べる。次に、従来の集中巻構造を持つ埋込磁 石同期モータ(Interior Permanent Magnet Synchronous Motor: IPMSM)について、分布巻構造のモータと比較し ながら、巻線構造の違いによるトルクの特徴について述べ る。最後に、トルクの特徴から考案した集中巻構造を持つ IPMSM向け非対称ロータ構造と、その出力密度特性につ いて述べる。

2. 出力密度とトルク・誘起電圧の関係

モータの出力は,モータのトルクと回転速度を用いて次 式で表される。

 $P = T \cdot 2\pi \cdot N/60 \cdots (1)$

ここで, *P*:出力(単位:W)

T: トルク(単位:Nm)

N:回転速度(単位:r/min)

出力はトルクに比例するため、出力向上のためにはトル クの増加が効果的であることが分かる。IPMSMが発揮可 能なトルクは"マグネットトルク"と"リラクタンストルク" の2種に大別できる。マグネットトルクはロータ内に埋め 込まれた磁石とステータが吸引・反発することによって発 生するトルクであり、その大きさは磁石から発生する磁束 に比例する。一方、リラクタンストルクは、ロータ内にあ る磁気的な突極とステータが吸引することで発生するトル クであり、ロータ形状に強く依存する。

このように、マグネットトルクはロータ内磁石から発生 する磁束に比例するため、その磁石磁束を増やすことで総 合トルクの向上が可能である。しかし、モータの"誘起電 圧"も磁石磁束に影響される点に留意しなければならない。

通常,モータに接続されるインバータなどの駆動装置 は,パワーモジュール等に素子耐圧が設定されているため, モータ設計側では,最高回転速度運転時の誘起電圧が素子 耐圧を超過しないように制約を設ける場合が多い。

モータの最高誘起電圧は,磁石磁束と最高回転速度から 次式で表される。

 Φ :磁石磁束(単位:Wb)

N_{max}:最高回転速度(単位:r/min)

このとき,最高誘起電圧は磁石磁束に比例する。仮にマ グネットトルク向上のため磁石磁束を増加させると,最高 誘起電圧も併せて増加してしまうため,仕様としての最高 回転速度を低下させるか,駆動装置の耐圧設計を見直す必 要がある。

したがって,このような仕様変更を加えないことを前提 にすると,磁石磁束を増やすことができないため,このよ うな条件で出力を向上させるためには,リラクタンストル クを向上させる必要がある。

3. 集中巻構造と分布巻構造のトルク特性比較

3.1 集中巻構造と分布巻構造について

この章では、リラクタンストルク向上のため、モータの 巻線構造の違いによるトルク特性に着目し、検討した内容 について述べる。

一般的に, IPMSMの巻線構造は, 集中巻構造と分布巻 構造の2種類に大別できる。集中巻構造は, 一つのステー タティースだけにコイルを巻回する単純な構造であり, コ イルエンドを小さくしやすい長所がある。そのため, コイ ルエンドを含めた軸長が制約される用途で有利である。一 方, 分布巻構造は複数のステータティースにわたってコイ ルを巻回する複雑な構造であり, コイルエンドは大きくな りやすい。しかし, ステータで発生する回転磁界を正弦波 に近づけることが可能で, 高調波鉄損やトルクリプルの抑 制を行いやすい。

次節から,両巻線構造のトルク波形やリラクタンストル ク特性などを,二次元有限要素法解析の結果から述べる。

3.2 解析モデルの説明

図1に,検討に使用する集中巻構造IPMSM(以下"集 中巻モータ"という。)と分布巻構造IPMSM(以下"分布巻 モータ"という。)の解析モデルを示す。また表1に,両解 析モデルの諸元を示す。

ロータ構造は8極のV字磁石型IPM(Interior Permanent Magnet)ロータで、両解析モデルで共通である。集中巻 モータのステータは12スロット、分布巻モータのステー

図1. 解析モデル

表	1	解析モテ	ドル(Д)諸元

	集中卷	分布卷	
極数	8		
スロット数	12	48	
コイル巻数/スロット	60	15	
直列導体数	60		
ステータコア直径	200.0mm		
ロータコア直径	129.0mm		
ギャップ長	0.5mm		
コア積厚	100.0	Omm	
磁石種類	ネオジム	焼結磁石	
コア材料	積層電	磁鋼板	
定格電流	150A	Arms	

タは48スロットである。その他直列導体数,ステータコ ア直径,ギャップ長,コア積厚などは全て共通にした。

3.3 トルク波形の比較

図2に,集中巻モータと分布巻モータの解析モデルでの トルク波形を示す。電流の大きさは定格電流値,電流位相 角βは30°とした。また,集中巻モータの平均トルクの大 きさを1として規格化した。トルク波形の最大値に注目す ると,両モータの間に差はない。しかし,最小値に注目す ると,分布巻モータの方が大きい。分布巻モータは、どの ロータ回転角度でも,比較的安定してトルクを発揮できて いることが分かる。一方で集中巻モータは,瞬時的に分布 巻モータと同等の最大トルクを発揮できるが,回転角度に よってはトルクが大きく低下することが分かる。結果とし て,平均トルクに大きな差になって表れている。

3.4 リラクタンストルク波形の比較

図3に、図1の各解析モデルから磁石を取り除き,空隙 とした"磁石なし"解析モデルを示す。この解析モデルの場 合,ロータ内に磁石が存在しないためマグネットトルクは 発揮されず,リラクタンストルクだけが発揮される。図4 に、"磁石なし"解析モデルでのトルク波形を示す。電流の 大きさは定格電流値,電流位相角βはリラクタンストルク が理論上最大になる45°にした。磁石ありの場合と同様に, 最大値は集中巻モータと分布巻モータで差異が小さい一方 で,最小値は分布巻モータの方が大きい。結果として,平 均トルクは分布巻モータの方が大きくなっている。

これらの解析結果から,集中巻モータのトルクが分布巻 モータより低くなる原因は,特定の回転角度でリラクタン ストルクが瞬時的に低下するためと推測できる。

図4に示すとおり、集中巻モータでリラクタンストルク が最小になる回転角度は電気角で30°である。そのときの 磁束の流れから、リラクタンストルクが低い理由を検討す る。図5に、集中巻モータと分布巻モータそれぞれの"磁 石なし"解析モデルでの、回転角度30°のときの磁束密度 分布と磁束線図を示す。まず、図5(a)に示す集中巻モー タの結果に注目すると、片方のロータ極が二つのステー タティースの中心に位置していることが分かる。このと き、ステータからロータに流入する磁束は、V字磁石の内

図5. "磁石なし"解析モデルでの磁束密度分布と磁束線図

側のコア領域を通過する経路を形成している。しかしなが ら、ロータコアの中心がステータティースの中心と一致し ているために磁気吸引力が平衡し、トルクに寄与していな いことが予想できる。さらに、もう片方のロータ極は、残 り一つのステータティースと正対している。ステータから ロータに流入しようとする磁束が、磁極の空隙に遮蔽され て、トルクに寄与していないことが予想できる。

一方で、図5(b)に示す分布巻モータの結果に注目すると、 V字磁石の内側を通る磁束が非対称になっている。磁気吸 引力が不平衡になり、トルクの発生に寄与していることが 予想できる。さらに、隣接するロータ極でも同様の磁束経 路が発生しており、全ての極で安定してリラクタンストル クを発揮できる構造になっていることが分かる。

この解析結果から,集中巻モータで特定の回転角度でリ ラクタンストルクが低下する理由は,ロータ・ステータ位 置関係の対称性に起因する,磁気吸引力の平衡であること が明らかになった。

4.1 解析モデルの説明

3章で述べた磁気吸引力の平衡を解消するため、非対称 ロータ構造に着目した。図6に、提案する非対称ロータ構 造を備えた集中巻モータ解析モデルを示す。対称ロータ構 造のトルク最小点での磁束経路の対称性を解消するため、

図6. 非対称ロータ構造集中巻モータの解析モデル

V字磁石の内側部分に斜めに傾斜した非対称空隙スリット を設置した。さらに、ステータからロータに流入する磁束 を効率的にリラクタンストルクに寄与させるため、V字を 構成する磁石辺の幅も非対称になるよう調整を加えている。

4.2 非対称ロータ構造のトルク特性

図7に,提案する非対称ロータ構造の"磁石なし"解析モ デルでのトルク波形を示す。図4の解析と同様に,電流の 大きさは定格電流値,電流位相角は45°とした。

図8に、対称ロータ構造と非対称ロータ構造の"磁石な し"解析モデルでのトルクの平均値・最大値・最小値を比

図7. 非対称ロータ構造の"磁石なし"解析モデルでのトルク波形

三菱電機技報・Vol.95・No.7・2021

較したグラフを示す。非対称ロータ構造は、従来の対称 ロータ構造に比べて最小値が大きくなっていることが分か る。最大値も微増しており、結果としてトルクリプルは 7.0%低減し、平均トルクは3.3%向上した。提案した非対 称ロータ構造は、リラクタンストルクの向上に効果的であ ることが分かる。

図9に、提案する非対称ロータ構造の"磁石なし"解析モデ ルでの磁東密度分布と磁東線図を示す。図9(a)は対称ロー タ構造でトルク最小値になる回転角度30°の図を、図9(b) は非対称ロータ構造でトルク最小値になる回転角度42° の図を示している。まず回転角度30°の様子に注目する と.対称ロータ構造で磁束経路が対称になっていた箇所 で、非対称空隙スリットによって変化が生じて、リラクタ ンストルクの発生に有効な磁路が形成されていることが分 かる。この磁路によって、従来では発生していなかったト ルクが発生していると推測できる。次に、回転角度42°の 様子に注目すると、回転角度が進んだことによって、空隙 スリットと片方の磁石辺で新たに作られたV字領域で、磁 東経路が対称になっていることが分かる。このロータ極で は、リラクタンストルクの発生は少ないと推測できる。し かし、もう片方のロータ極に注目すると、回転角度が進ん だことによって、ロータ極とステータティースの正対関係 が解消されて、リラクタンストルクの発生に有効な磁路が 形成されていることが分かる。従来は、隣接する極が同時 にトルクを発揮できない状態に陥っていたが、非対称空隙 スリットによってトルクを発揮できないタイミングをずら

すことが可能になり、トルク最小値を向上させることが可 能になった。

図10に,集中巻モータの"磁石なし"解析モデルでの電 流位相角βと平均トルクの関係を示す。最大トルクは非対 称ロータ構造の方が大きく,リラクタンストルクの向上を 達成している。

図11に,提案する非対称ロータ構造の"磁石あり"解析 モデルでのトルク波形を示す。図2の解析と同様に,電流 の大きさは定格電流値,電流位相角βは30°とした。図12 に,対称ロータ構造と非対称ロータ構造でトルク平均値・ 最大値・最小値を比較したグラフを示す。磁石がある場合

図10. "磁石なし"解析モデルでの電流位相角βと平均トルク の関係

図11. 非対称ロータ構造の"磁石あり"解析モデルでのトルク波形

図12. 対称/非対称ロータ構造の"磁石あり"解析モデルでの トルク特性比較

でも,非対称ロータ構造は対称ロータ構造に比べてトルク 最小値・最大値が大きくなっており,平均トルクは2.3% 向上した。

図13に,集中巻モータの"磁石あり"解析モデルでの電 流位相角βと平均トルクの関係を示す。"磁石なし"解析モ デルと同様に,最大トルクは非対称ロータ構造の方が大き くなっている。提案した非対称ロータ構造は,通常のトル クの向上にも効果的であることが明らかになった。ま た,図13には非対称ロータ構造の逆方向回転時の特性 も併せて示している。逆転時は非対称空隙スリットが リラクタンストルクを減少させる働きを持つため,対称 ロータ構造よりも低いトルクになっていることが分かる。

4.3 対称/非対称ロータ構造の出力特性比較

対称ロータ構造と非対称ロータ構造の諸特性解析結果 を,それぞれ"①対称""②非対称"として表2に示す。ど の項目でも、対称ロータ構造の値を1として規格化した。

まず無負荷誘起電圧に注目すると,非対称ロータ構造は 磁石とギャップの間に非対称空隙スリットを設置している ため,対称ロータ構造より無負荷誘起電圧が低くなってい る。すなわち,非対称ロータ構造は磁石磁束が低下してい るにもかかわらず,リラクタンストルク向上によって対称 ロータ構造以上のトルクを発揮できていることが分かる。

次に最大出力に注目すると,非対称ロータ構造は最大ト ルクと同程度の割合で向上していることが分かる。ここで, 最大トルクを対称ロータ構造と同等になるよう,コイル巻 数を減らした場合の解析結果を"③非対称コイル巻数減"と して**表2**に示す。これによって,モータの逆起電力を抑制 し,より高い回転速度まで従来の対称ロータ構造と同等の 最大トルクを発揮可能になる。さらに,コイル巻数を減じ たことによって巻線1本当たりの断面積を大きくでき,電 流密度が低下した。これに対して,電流密度を従来と同等 とし,ステータのコイル領域を小さくしてロータ直径を増

図13. 「磁石あり" 解析モテルでの電流位相角 B と平均トルク の関係

表2.	対称/	「非対称ロ・	- タ構造の	諸特性
<u> </u>	NU 10	2523 22		

	①対称	②非対称	③非対称/ コイル 巻数減	 ④非対称/ コイル巻数減/ ロータ直径増加
コイル巻数/スロット	60	60	58	58
ロータ直径(mm)	129.0	129.0	129.0	130.6
電流密度(p.u.)	1.00	1.00	0.97	1.00
無負荷誘起電圧(p.u.)	1.00	0.98	0.95	0.93
最大トルク(p.u.)	1.00	1.02	1.00	1.00
最大出力(p.u.)	1.00	1.02	1.05	1.09

加させた場合の解析結果を"④非対称コイル巻数減ロータ 直径増加"として**表2**に示す。より大きなリラクタンスト ルクを発揮することが可能になり、9%の最大出力向上を 達成した。

図14に,対称ロータ構造(表2①)と最終提案の非対称 ロータ構造(表2④)の回転速度-トルク曲線及び回転速 度-出力曲線を示す。低速域での最大トルク・出力は同等 であるが,高速域では非対称ロータ構造の方が高く,最高 回転速度での12.8%の出力向上を達成している。

最終提案構造では、依然として誘起電圧の制約に余裕が ある。この提案モータに、油-水熱交換器を備えた油を用 いた高効率な冷却構造を併用することで、磁気特性が高い ものの高温での使用ができなかった磁石の使用を可能にし た。結果として、更に出力密度を向上させて、世界最高ク ラスのモータ出力密度23kW/Lを達成した。

5. む す び

集中巻構造IPMSMのリラクタンストルクが分布巻構 造IPMSMに比べて小さい理由を二次元有限要素法解析に よって検討し,特定の回転角度で発生する磁気吸引力の平 衡が原因であることを明らかにした。リラクタンストル クを向上させるため,磁石の前に傾斜した空隙スリットを 設ける非対称ロータ構造を提案した。特定の回転角度での 磁気吸引力の平衡を解消し,リラクタンストルクを向上さ せる効果があることを明らかにした。これらの技術と冷却 構造の改善によって,世界最高クラスのモータ出力密度 23kW/Lを達成した。今後は,更なる高出力密度化に向け て,技術開発を推進していく。