·般論文

Export Business of Satellite Onboard Equipment — Adapting to Rapidly Expanding Overseas Market Demands —

要 旨

三菱電機は、太陽電池パネル、バッテリー、ヒートパ イプパネル等の人工衛星(以下"衛星"という。)搭載機器を、 自社衛星向けだけでなく海外商用衛星メーカーにも輸出し ており、日本の宇宙産業の海外展開をリードしてきた。し かし、近年の国際衛星市場は、衛星コンステレーション^(注1) の台頭をきっかけに価格競争が激化し、衛星市場は高品質 な個産衛星と低価格小型量産衛星とに、搭載機器も含めて 二極化する急激な転換期にある。多様化する衛星市場の ニーズに応えるため、当社のFA-IT統合ソリューション "e-F@ctory"のコンセプトに基づき建設した新工場を稼 働させ、輸出事業の競争力強化を図ってきた。

衛星搭載機器の中で,太陽電池パネルやバッテリー等の 電源系バス機器は,原価低減と並行して単位素子の小型化 によって幅広い電力要求に応えられるスケーラブル化を 図ってきた。さらに,次世代高速衛星通信で主帯域になる Ka帯利用を想定し,高周波機器の性能向上を進めてきた。 一方で,小型高密度化による熱問題に対応するため,効率 的な熱輸送と排熱を実現するヒートパイプ/ラジエータパ ネルも開発し,ペイロード支援機器として拡充を進めている。

吉岡省二*

Shoji Yoshioka

野村武秀†

Takehide Nomura

竹谷 元[†] Hajime Takeya 田中宏治†

小圷秀明†

Hideaki Koakutsu

Koji Tanaka

今後,複数機同時打ち上げが可能な小型衛星の開発が加 速し,衛星搭載機器の小型化・高収納率化が要求される。 さらに低中軌道周回衛星では,地球全域に対する高速通信 サービス網の計画が進んでおり,衛星搭載機器への量産 化・低価格化要求の加速は想像に難くない。当社は,生産 の自動化促進,民生部品の積極的採用などによって,急拡 大する衛星市場の要求に応えていく。

(注1) 複数の人工衛星を協調して動作させる運用方式。

衛星搭載機器(電源系バス機器とペイロード支援機器)

当社は、宇宙産業の世界市場をターゲットに輸出事業を展開している。LEO(低軌道)小型衛星から、GEO(静止軌道)大型衛星まで対応可能 なスケーラブルな電源系バス機器として、太陽電池パネル、リチウムイオンバッテリーを開発し、低価格での提供を目指している。また、ペイ ロード支援機器として、高効率排熱輸送システム、小型高密度高周波デバイスなどのラインアップ拡充を図っている。

1. まえがき

当社は、太陽電池パネル、バッテリー、ヒートパイプパ ネル等の衛星搭載機器を、自社衛星への搭載だけでなく海 外衛星メーカーにも輸出しており、日本の宇宙産業の海外 展開をリードしている。競争が激化する国際商用衛星市場 で、衛星搭載機器に対して、高品質・低価格・短納期・大 型化・大電力化等が求められている。当社はこれらの要求 に応えるため、新工場建設による生産エリア拡張、生産設 備の大型化・自動化推進、当社のFA-IT統合ソリューショ ン"e-F@ctory"に基づくIT技術導入等によって、衛星搭 載機器輸出事業の競争力を強化し、シェアを拡大してきた。

2020年代に入り,静止衛星でのデジタル・フレキシブ ル衛星の開発加速,低軌道から中軌道周回衛星でのコンス テレーション計画の急増などによって,衛星搭載機器に対 して,新たに量産化・超低価格化等が要求されるように なっている。当社は,転換期を迎えている国際商用衛星市 場の要求に応えるために新たなコンセプトに基づく衛星搭載 機器の開発を進めており,本稿ではその状況について述べる。

2. 製品開発状況

2.1 SPM

衛星搭載用の太陽電池パドルの中で、フレキシブルタイ プの太陽電池パドルは、打ち上げ時はロール状に巻き取 り、又は折り畳んでおき、打ち上げ後に進展マストを用い て展開して運用される。このため、現在多用されている大 型のハニカムサンドイッチパネル上に太陽電池セルが実装 されたリジットタイプの太陽電池パネルと比べて、大面積 化やコンパクトな収納が可能という特長を持つ。図1は ROSA⁽¹⁾と呼ばれるロール状に巻き取るタイプの例であり、 展開イメージと、その中に搭載されるSPM(Solar Power Module)を示したものである。ROSAの太陽電池パドル は矢印方向に展開され、SPMは図中に点線で囲った部分 を1単位とし、複数個実装される。SPMの数は、巻き取 られる長さなどに応じて変化する。樹脂フィルムの曲げ

図1.フレキシブル太陽電池パドル例とSPM試作品

に、実装された太陽電池セルが追随していることが分かる。 SPMは、このような特徴を持つフレキシブル太陽電池パ ネルを構成する一つのモジュールであり、可撓(かとう)性 を持つシート上に高密度に太陽電池セルが実装されたもの である。この方式のフレキシブルパドルは米国Deployable Space Systems(DSS)社などで開発が進められている⁽¹⁾。

コンステレーション衛星では、一度の打ち上げでロケッ トのフェアリング(ロケット先端の衛星を保護するカバー) 内に多くの衛星を搭載する必要があり、収納性に優れるフ レキシブルパドルの採用を検討している。さらに、大面積 化が比較的容易という特長も生かし、低コストのシリコ ンセルを多数搭載することで、高効率のGaAs(ガリウム ヒ素)セルから置き換える検討も進めている。このように コンステレーション衛星プロジェクトの立ち上がりととも に、フレキシブル太陽電池パドル向けのSPMもニーズが 高まっており、当社もSPM市場でのシェア確保に向けて、 製品化検討を進めている。

製品化の課題は、SPMの生産スピードである。当社は、 これまでリジットタイプの太陽電池パドルで数多くの出 荷・軌道上実績を持っており、高い信頼性を持つ製品の製 造が可能である。これまでも自動化を推進して生産スピー ドを向上させてきたが、必要とされる衛星機数が多いこと、 大面積化する傾向があることに加え、一度に多くの衛星を 短期間に打ち上げ続ける構想から、短納期で圧倒的に多く の製品を生産・出荷し続ける必要がある。現在、月間の生 産能力を現行の数倍程度に高めるため、製造システムの革 新に取り組んでいる。具体的には、手作業中心の搬送シス テムの自動化、時間を要していた接着プロセス改善による 短時間化、当社相模工場の新棟スペースの活用などである。 これらの取組みによって市場のニーズにタイムリーに応える ことで、海外の衛星搭載機器市場でのシェアを拡大していく。

2.2 LIB

地球周回衛星として初めて,LIB(Lithium Ion Battery) を搭載した衛星SERVIS(Space Environment Reliability Verification Integrated System)-1が,2003年10月に打ち 上げられて軌道投入に成功した。宇宙機用LIB(図2)は、電 力を蓄えるリチウムイオンセル、振動・衝撃からセルを保護 するセルクランピングホルダ、シャーシ、バスバー、異常充

図2. 宇宙機用LIB(特許3888283号, 特許6537730号)

電を回避する過充電保護装置,セルのオープン故障後もオペ レーションを持続可能にするバイパススイッチなどからなる⁽²⁾。

宇宙機用に設計・認定されたLIBは一般に高価だが,数 十機から1,000機以上の衛星で構成されるコンステレー ション衛星向けには,衛星一機当たりの価格抑制のため, バッテリーも低価格化が要求される。しかし,量産効果が 期待できるほど機数は多くなく,宇宙品質要求も変わらな いため,バッテリーの低価格化には民生用COTSセルの採 用が不可避である。

民生用リチウムイオンセルは18650型(直径18mm, 長 さ650mm)や21700型(直径21mm, 長さ700mm)などが 代表的サイズであり,コードレスクリーナーや電動工具な どに多用されている。図3に,開発中のCOTSセルベースの 宇宙用バッテリー基本モジュールの例を示す。1セル5Ah のセルを6セル並列に接続した30Ahのモジュールであり, 電圧はモジュールを複数直列に接続して調整する。

COTSの課題は宇宙品質の確保である。特にセルのロッ ト健全性証明は重要である。図4はセルロットの健全性評 価のフローチャート例である。開回路電圧,放電容量,直 流抵抗,質量を全数検査し,測定値が±3σ(標準偏差の 3倍)以内に入り,かつ,適正値内にあることが要求され る。そして,不適合セルの割合が顧客と合意した割合の α%以下であった場合にロットを適合と見なす。この方法 は現在国際規格⁽³⁾として検討中である。

品質確保でのもう一つの課題は寿命特性の把握である。 民生用COTSセルは、同じ型式でも材料や設計変更が頻繁 に発生し、寿命特性にも変化が生じる。一般にLIBは**表1**

図3. COTSセルベースの宇宙用バッテリー基本モジュールの例

図4. COTSセルのロット健全性評価フローチャート例

に示したSEI成長など複数のメカニズムで劣化し,それぞ れ理論式が提案されている⁽⁴⁾。別途実施する長期保存試験 と充放電サイクル試験の劣化データを理論式にフィッティ ングさせることで寿命予測式を構築し,寿命を推定する。 例として**図5**に,打ち上げ前に地上で7.5年を経たバッテ リーが,その後軌道上で15年運用されたときの3パター ンの寿命推定曲線を例示する。充放電時の温度が30℃と 比較的高く,保存時のSOC(State Of Charge:充電レベ ル)が高い100%の条件(3)で,大きな容量低下が予測され たが,条件(1)(2)では,COTSセルでも十分な寿命性能が 示された。COTSセルの宇宙利用は,セルメーカーの想定 外使用を前提にするため,宇宙環境の特殊性を理解し,電 気特性や寿命特性など,宇宙環境へのセルの耐性を理解し た上で品質に責任を持つことが重要になる。

当社は、LEO周回衛星から静止軌道衛星まで、多様な 衛星に対応するため、従来LIBのほか、コンステレーショ ン衛星向けとしてCOTSセルベースの低価格かつ高品質宇 宙用バッテリーを加え、スケーラブルな製品ラインアップ を整える予定である。

劣化 メカニズム	劣化 部位	容量 低下 効果	分極 増大 効果	劣化の特徴と劣化近似式
SEI成長	負極	0	0	負極電位 低下と高温 $\frac{\partial L}{\partial t} = a_s \cdot \frac{Ms}{\rho_s} \cdot Ds \left(\frac{\partial Cs}{\partial r} \right)_{r=r_0+L}$
Li析出	負極	0	_	負極電位 低下 $\Delta W_{Li} = C_{Ah} \cdot J_{Li} \cdot \Delta t_{Li}$
正極活物質 変質	正極	0	0	正極電位 上昇で加速 $Ds = \frac{f_1}{1 + e^{f_2 \cdot (f_3 - x)}}$
負極活物質 変質	負極	0	0	負極電位 低下で加速 $Dsn = \frac{f_{1n}}{1 + e^{f_{2n} \cdot (f_{3n} - x)}}$
正極 バインダ 凝集力低下	正極	0	0	粒子間接触 抵抗増大 $F_i = S_i \cdot D_b \cdot \left(\frac{l_i - l_{i,0} - \Sigma \Delta l_{i,0}}{l_{i,0}} \right)$
負極 バインダ 凝集力低下	負極	0	0	粒子間接触 抵抗増大 $F_i = S_i \cdot D_b \cdot \left(\frac{l_i - l_{i_0} - \Sigma \Delta l_{i_0}}{l_{i_0}} \right)$
電解液量 減少	セル	_	0	$\begin{vmatrix} \text{SEIK} \\ \text{BEK} \\ \text{BEK} \end{vmatrix} \phi_n = S_n \sum_{i=1}^{kn} \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left(-\frac{(x-\mu_i)^2}{2\sigma_i^2}\right) \end{vmatrix}$

表1. COTS LIBの主な劣化メカニズム

劣化への効果 $③:影響大 <math>\bigcirc: 影響小 -: 影響なし$ SEI:固定電解質界面層(Solid Electrolyte Interface), Li: リチウム, L:SEIの層厚, $W_{Li}:$ リチウム析出量, Ds: 正極の分極抵抗増大率,Dsn: 負極の分極抵抗増大率, Fi: 電極内バインダの接着力, $<math>\phi_n: セパレ-タ内の電解液占有体積$

図5. COTSセルバッテリーの異なる軌道上運用条件での 容量維持率低下シミュレーション

2.3 ヒートパイプパネル

衛星機器の小型・高密度化の進展に伴い,発熱密度が上 昇し,機器の効率的な温度抑制手段が必要になってきた。 機器高温化の抑制には,熱輸送システムの輸送速度アップ と広い放熱板の設置が必須になるが,放熱システムを衛星 打ち上げロケットのフェアリング内に収納する必要がある。 大きい放熱板をコンパクトに"折り畳む"熱輸送システムが展 開型ラジエータ(DePloyable Radiator : DPR)である(図6)。

DPRには、数百W~1kWの熱量を輸送するヒートパイ プが装着されるが、課題はヒートパイプ折り畳み部の損傷 をいかに抑えるかである。当社では可撓性のあるループ ヒートパイプ(LHP)を開発してこの課題を解決した。現 在開発中の技術試験衛星9号で実用化モデルの実証を行う 予定である。LHP⁽⁵⁾の動作原理を図7に示す。蒸発器を加 熱すると、内部に封入された作動流体が蒸発し(図7①)、 蒸気管を通って凝縮器に移動する(図7②)。凝縮器では作 動流体が冷却されて液化し(図7③)、蒸発器内に設置され たプライマリウィックが発生する毛細管力によって液管を

通って蒸発器に還流する(**図7**④)。加熱量や動作温度に よって液体の占める体積が変動しても動作が継続するよう に蒸発器に隣接してリザーバが設けられており,リザーバ からの液の出入りは,併設されたセカンダリウィックが発 生する毛細管力によって行われる。ウィックが蒸発器だけ に設置されているため,蒸気管及び液管は可撓性のあるフ

レキシブル管の使用が可能になり、DPR搭載が実現した。 当社は長年にわたり、ヒートパイプパネルを広く提供し てきた。今後、DPR及びLHPをラインアップに加えるこ とで、提供先ペイロードの最大化に貢献し、多様な市場 ニーズに応えていく。

2.4 SSPA

従来GEO通信衛星からのダウンリンクは、地上固定局 へKu帯搬送波に大量のデータを載せて送信している。こ のため衛星からの送信出力は100W超規模になり、高周波 増幅器には電力効率面で優れた進行波管増幅器(Traveling Wave Tube Amplifier: TWTA)が用いられてきた。近 年、K帯が衛星通信向けに開放されたことで、特にLEO コンステレーション衛星への採用が多数計画されている。 LEO衛星では地上局への送信に大電力を必要とせず、また 可視域にある地上局とのリンクを頻繁に切り替える運用を 考慮し、半導体デバイスから成るSSPA(Solid State Power Amplifier)を複数チャネル搭載する構成が採用される。

一方で、LEO衛星は電力供給・排熱に制限がある小型 衛星のため、SSPAには高電力効率が求められ、従来半 導体材料のGaAsでは要求性能に十分に応えられず、高電 圧・高電力密度性能を兼ね備えた窒化ガリウム(GaN)に よる高出力増幅器の開発に各社しのぎを削っている。当社 は"だいち2号"で業界初^(注2)のL帯GaN製SSPAを搭載し て以降、X帯まで高周波化を進めてきた実績を活用し、K 帯でもGaN製SSPAを投入するために開発を推進している。 図8はGaN製デバイスを適用した高出力増幅器のプロト タイプで、複数のGaN製MMIC(Monolithic Microwave Integrates Circuit)ベアチップをパッケージ内に実装し、 一括気密封止している。従来は半導体デバイスごとに気密 パッケージされた製品を購入していたが、安価なチップ部 品を自社でまとめて封止することで大幅なコスト低減を 狙ったものである。主要性能は**表2**に示すとおりで、将来

図8. GaN製デバイスを用いた高出力増幅器のプロトタイプ

表2. LEO衛星向けK帯SSPAの主要性能

パラメータ	SSPA性能值	備考				
動作周波数	17.8~20.2GHz	帯域フルカバー				
出力電力	5 W/ch	NPR = 15dB動作点で				
消費電力	27W/ch	DC/DCの消費電力含む				
チャネル間 アイソレーション	– 50dB	LNAとのアイソレーションも含む				
質量	2.52kg	SSPA + LNA + DC/DCの総質量				
ミュートモード	SSPAチャネル ごとに装備	外部コマンドによって制御				

NPR: Noise Power Ratio

は電力効率の更に10pt向上を図っていく。

なお、地上局からのKa帯アップリンク信号を衛星側 で受信するフロント機器は低雑音増幅器(LNA)である が、当社はLNAの製造能力も持つ利点を活用してSSPA とLNAを一体実装し(図9)、両者をアンテナ近傍にレイ アウト可能にする構成を提案し、客先のシステム設計面で のメリットをも図っている。

(注2) 2011年12月1日, 当社調べ

3. 製品拡販状況

(1) SPM

大電力を要する国際宇宙ステーションのシステムに伸展 型太陽電池アレーが採用され、今後も米国アルテミス計画、 月周回宇宙ステーション(ゲートウェイ)、月面着陸機、月面 ローバなどへの搭載が計画されている。従来GEOよりも厳 しい環境下に曝(さら)されるため、過去の豊富な太陽電池パ ネル搭載実績から習得した当社知見に寄せられる期待は大 きく、国立研究開発法人 宇宙航空研究開発機構(JAXA)と 欧米衛星メーカーとの協同によるSPM開発を推進していく。 (2) LIB

COTSリチウムイオンセルを搭載したLIBをJAXA向け 革新的衛星技術実証2号機に搭載して2021年打ち上げ予 定である。軌道上運用データ構築を進め,宇宙環境耐性, 性能,信頼性,寿命等のデータ構築を進め,低価格LIBの 品質を実証する。また,量産,短納期化,製造ばらつき等 の課題をクリアし,海外市場から引き合いのあるLEOコ ンステレーション計画に参入していく。並行して,従来 LIBについても高性能化/低コスト化開発を継続し,過去 の豊富な搭載実績に裏付けされた信頼性を基に,ゲート ウェイ有人居住棟への搭載を実現していく(図10)。 (3) HPP

システムの大電力化に対応した高排熱システムは海外市 場でニーズが高い。ゲートウェイ電気・推進部,月面ロー バ搭載の熱制御機器,デジタルフレキシブルペイロード等 搭載の大型通信衛星では必須機器である。国内衛星向けに 開発した成果を基に,またパイプからパネルまで全工程を 社内生産可能という強みを活用し,JAXAと欧米衛星メー カーへの提案活動を継続している。

図10. NASAゲートウェイ構成モジュール

(4) SSPA

伝送容量が大幅に拡張された通信衛星やLEOコンステ レーション衛星のミッションには、大容量化と高速化が 必須である。海外衛星市場では次世代高速衛星通信用の 帯域としてKa帯(20/30GHz帯)の利用が想定され、Ka 帯SSPAへの関心が高まっている。海外のSSPA供給メー カーがキーパーツのGaN MMICを外部サプライヤに依存 しているのに対し、当社は自社製MMICの適用可能な利 点を活用し、性能・価格両面で顧客ニーズにマッチした製 品を提案していく。

4. む す び

ニュースペースと評される新たな衛星サービス・プレー ヤーの勃興によって,衛星市場は大きな変革期を迎えてい る。衛星搭載機器も,従来のように個産・高信頼性を追い 求めた高額製品だけを提供するのではなく,量産・適度な 品質保証にとどめた廉価製品も必要になる。

本稿では、従来の静止軌道衛星向けビジネスで当社が外 販実績を積んできた衛星搭載機器を中心に、将来市場への 取組みを述べた。過去の実績・知見を活用しながらも、こ れらに固執することなく、スピーディに市場要求の変化に 適合した製品を提供していく。近い将来、頭上を星のご とく幾多の人工衛星が飛び交う日が来るが、これら衛星に 搭載された製品が、国連で合意されたSDGs(Sustainable Development Goals)に向けて、人々の平和で豊かな生活 と福祉に貢献することを期待する。

参考文献

- Deployable Space Systems社ホームページ https://www.dss-space.com/products-flex-blanket
- (2) 岡 寿久, ほか:宇宙用大容量リチウムイオンバッテリー, 三 菱電機技報, 94, No.2, 139~143 (2020)
- (3) ISO17546 "Lithium ion battery for space vehicles-Design and verification requirements"
- (4) 吉岡省二:宇宙用リチウムイオン電池の国際標準化と将来像, 第57回電気化学セミナー(2017)
- (5) 石川博章, ほか:リザーバ内蔵ループ形ヒートパイプの熱特性 に関する研究, 日本機械学会論文集B編, 72, No.720, 2010~ 2017 (2006)