特集論文

HVIGBTモジュールの 耐湿性確認技術

Humidity Robustness Verification Technologies for High Voltage Insulated Gate Bipolar Transistor Modules

要 旨

大電力を高速にスイッチングする三菱電機のHVIGBT (High Voltage Insulated Gate Bipolar Transistor)モジュー ルは、1997年に製品化して以来、高い信頼性が評価され、 主に電鉄の駆動システムや工業用大型機器、HVDC(High Voltage DC transmission)などの電力変換装置に広く採 用されてきた。これまで当社はHVIGBTモジュールの性能 向上に取り組み、2008年に"Rシリーズ"HVIGBT、2015年 に"Xシリーズ"IGBTをそれぞれ市場投入し、電流容量の 増加や動作温度の拡大を実現し、電鉄・電力市場の発展に 大きく貢献してきた。

近年、市場の拡大に伴ってパワー半導体が様々な環境下

で使用されるようになってきた。電鉄・電力市場では,高 い信頼性が求められるため,こうした様々な環境に対する 耐環境性能を確認することの重要性が高まっている。また, 湿度の高い環境については,モジュールが密閉構造ではな いため,その影響を完全に排除することは難しく,耐湿性 の確認技術が強く求められていた。

羽鳥憲司*

中村圭一

Keiichi Nakamura **本田成人*** Shigeto Honda

Kenji Hatori

田中宜彦*

Nobuhiko Tanaka

こうした背景を踏まえ、当社ではHVIGBTモジュール の耐湿性確認技術の構築に取り組んできた。湿度による故 障メカニズムとして、表面電荷の蓄積による新たな故障 モードがあることを確認し、Xシリーズチップで採用して いるSCC技術の採用が有効であることを確認した。

耐湿性向上技術であるSCC技術を採用したHVIGBTモジュール"Xシリーズ"

耐湿性向上技術であるSCC技術を採用したHVIGBTモジュール"Xシリーズ"の"CM1800HC-66X(定格:3,300V/1,800A)"で、耐結露性検証試験を実施した。従来品種の"Hシリーズ(SCC構造不採用)"では結露試験1サイクルでNGであったが、SCC構造を採用することで100サイクルでも問題ないことを確認し、SCC構造が耐結露性に優れていることを確認した。

1. まえがき

鉄道は他の交通機関と比較してエネルギー効率に優れて おり、交通分野全体の環境負荷の軽減に資することから、 地球温暖化問題の解決への貢献のため、鉄道の利用が世界 的に促進されている。また、低炭素社会の実現の観点から、 鉄道の非電化区間の電化や、蓄電池車両の導入などが推進 されている。それに伴い、電車が地球上の様々な環境で走 行するようになってきた。

鉄道車両用パワーモジュールは小型・低損失であること に加えて,民生・一般産業用途に比べて高い信頼性が要求 されている。そのため,こうした様々な環境に対する耐環 境性能を確認することの重要性が高まっている。特に湿度 の高い環境については,モジュールが密閉構造ではないた め,その影響を完全に排除することは難しく,耐湿性の確 認技術が強く求められていた。

こうした背景を踏まえ、当社ではHVIGBTモジュール の耐湿性確認技術の構築に取り組んできた。こうした耐湿 性確認技術に基づき、耐湿性に優れた構造であるSCC技 術の有効性を確認し、当社最新世代HVIGBTモジュール であるXシリーズを開発した。

本稿では、Xシリーズによる検証結果などを交えながら、 これまでに当社が培ったHVIGBTモジュールの耐湿性確 認技術について述べる。

2. 湿度による故障メカニズム

2.1 既知の故障メカニズム

パワー半導体チップは、そのチップ外周を囲う終端部で その耐圧を保持している。通常、その終端部にはアルミニ ウム電極がリング状に配置され、各々のリングが電圧を分 担する役割を持っているが、湿気の侵入によってそれらの アルミニウム電極が腐食して、その機能を失うことによる 故障モードが知られている⁽¹⁾。また、銅や銀などのエレク トロケミカルマイグレーション(ECM)も従来知られてい る故障モードの一つである⁽¹⁾。

2.2 新たな故障メカニズム

当社がパワー半導体の耐湿性について研究してきた中で、 先に述べたアルミニウム腐食やECM以外にも、パワー半 導体の故障を引き起こす可能性のある故障モードを新た に発見した。以前から知られているアルミニウム腐食や ECMは故障に至るまで一定の時間を要するのに対し、新 たに発見した故障モードでは図1に示すように、数十秒 から数百秒でも電圧印加時のリーク電流の増加がみられた。 アルミニウム腐食やECMの進行には不十分な時間であり, 新たな故障メカニズムであることが確認された⁽²⁾。

新たに発見された故障モードは、HVIGBTモジュールを 吸湿させた後、急冷して結露状態を発生させた上で、DC 電圧を印加することで確認することが可能である。図1に 示すように、モジュールが乾燥した状態ではDC電圧を印 加してもリーク電流の増加はみられなかった素子が、結露 状態でDC電圧を印加すると、わずか70秒でリーク電流の 増加がみられた。この結果では、破壊に至ってはいないが、 DC電圧印加中にみられるリーク電流の増加は耐圧性能が 不安定になったものと推定される。

結露によってリーク電流が増加するメカニズムは次のと おりである。素子に電圧を印加すると,誘電体であるゲル がモジュール内部の電界に沿って分極する。また,同時に モジュールが吸湿すると,ゲルの分極との相乗効果によっ て,パワー半導体チップの終端部に表面電荷(+Qss)が蓄 積する(図2)。

図3に表面電荷(+Qss)が存在しない場合と,+Qssが 蓄積する場合のチップ終端部の電界分布を示す。チップ終 端部に表面電荷(+Qss)が蓄積すると,チップ終端部の電 界が高くなり,素子耐圧が劣化し,リーク電流が増加し, 最悪の場合素子故障に至るおそれがあることを確認した。

3. 耐湿性向上技術:SCC

こうした新たに発見された故障モードについて,当社で はSCC技術⁽³⁾を開発し,耐湿性を向上させたHVIGBTモ ジュール"Xシリーズ"をリリースした。図4に従来のチッ プ終端構造,図5にSCC技術を採用したチップ終端構造 を示す。従来構造ではチップ終端部を絶縁膜で被覆してい たが,SCC技術を採用した終端構造ではチップ終端部を 半絶縁膜で被覆している。

従来構造ではチップ終端部が絶縁膜で覆われているため に,蓄積された表面電荷(+Qss)が解放される経路がないの に対し,SCC技術を採用した終端構造では表面電荷(+Qss) が半絶縁膜を介して解放されるために,表面電荷がチップ 終端部の電界に悪影響を及ぼすことがない。そのため,結 露状態でも,良好な耐圧性能を保持できる。

SCC技術の効果について、先に述べた結露状態の電圧 印加試験で確認した結果を図6に示す。図に示すように、 同じチップ構造であっても、SCC技術を採用していない 場合には1サイクルでリーク電流の増加がみられたものが、 SCC技術を採用することで7サイクルまでリーク電流の 増加がみられないことを確認した。

図4. 従来のチップ終端構造(絶縁膜で被覆)

図5. SCC技術を採用したチップ終端構造(半絶縁膜で被覆)

4. 耐結露性確認試験(結露サイクル試験)

これまで述べてきた結露試験方法を図7に示す。この方 法では、高温高湿槽内で85℃85%RHの環境下で吸湿させ た後に、槽から取り出してヒートシンクで冷却するため、 繰り返し試験に不向きであった。しかしながら、耐結露性 を評価するには繰り返し試験の構築は不可欠である。また、 従来の結露試験では、市場における高湿度環境下で発生す る結露に対して、どの程度の加速試験になっているか不明で あった。そこで、当社ではこれらの課題の解決に取り組んだ。

4.1 市場での最悪環境の調査

当社では、市場での最悪環境を確認するため、様々な環 境下でモジュールを吸湿させた後に、急冷・結露させて 電圧印加する結露試験を実施した。試験に用いた素子は 3.3kV-IGBT(定格:3,300V/1,200A)である。その結果 を図8に示す。

図8に示すように、絶対湿度(Absolute Humidity: AH)

が高いほど結果が悪く、同じ絶対湿度であっても相対湿度 (Relative Humidity:RH)が高いほど結果が悪いことを 確認した。つまり、絶対湿度と相対湿度がともに高い条件 が市場での最悪条件と言える。環境条件に関する規格IEC 60721-3-5に規定される5K2クラスでは、温度変化があ る場合の最悪条件は30℃95%RH29g/m³と規定されており、 これに約10g/m³のマージンを加えて、ここでは36℃95% RH40g/m³を市場での最悪環境として想定した。

4.2 市場環境に対する結露試験の加速率調査

4. 1節で設定した市場での最悪環境に対して,結露試験 がどの程度の厳しさとなっているか確認するため,市場環 境最悪条件で吸湿後に急冷する結露試験を実施し,85℃ 85%RHで吸湿させた後に急冷する通常の結露試験との比 較評価を実施した。表1に示す結果から,市場の最悪条件 と比較しても,構築した結露試験は少なくとも80倍の加 速を得られていることを確認した。なお,この試験は,後 述する結露サイクル試験で評価している。

4.3 結露サイクル試験方法の構築

先に述べたとおり,従来の結露試験方法では,槽から取 り出してヒートシンクで冷却するというプロセスを経るた め,サイクル試験に不向きであった。サイクル試験を実現 するため,高温高湿チャンバでの冷却によるサイクル試験 を導入し,従来のヒートシンク冷却と同等の効果を得られ るか確認した。サイクル数に対する素子の吸湿量の推移を 比較した結果を図9に示す。図に示すように,ヒートシン ク結露試験と比較して,チャンバ結露試験では2倍のサイ

従来素子(3,300V/1,200A)	1サイクルでNG
Xシリーズ素子(3,300V/1,800A)	100サイクルでOK

クル数にすることで、同等の効果を得られることを確認し、 サイクル試験化に目処(めど)をつけた。

4.4 Xシリーズ結露サイクル試験結果

既に述べてきたように、Xシリーズでは耐湿性に優れた SCC技術を適用している。Xシリーズについて、結露サイ クル試験で評価した結果を**表2**に示す。その結果によって、 従来素子に比べて100倍以上の耐結露性を持つことを確認 した。先に述べた加速係数を考慮すると、市場での最悪環 境相当での8,000回の結露に相当する。

5. む す び

湿度による故障メカニズムとして,表面電荷の蓄積によ る新たな故障モードがあることを確認し,Xシリーズチッ プで採用しているSCC技術の採用が有効であることを確 認した。また,サイクル試験が可能な結露試験方法を構築 し,Xシリーズが結露試験100サイクルに耐え,市場での 最悪環境相当でも8,000回の結露に耐え得ることを確認した。

当社はこれらの耐湿性評価技術や耐湿性向上技術を用い て,パワー半導体モジュールの高い信頼性を実現し,低炭 素社会と豊かな生活の両立の実現に貢献していく。

参考文献

- Zorn, C., et al.: Acceleration of Temperature Humidity Bias(THB) Testing on IGBT Modules by High Bias Levels, ISPSD, 385~388 (2015)
- (2) Tanaka, N.: Robust HVIGBT module design against high humidity, PCIM Europe, 368~373 (2015)
- (3) Honda, S.: High Voltage Device Edge Termination for Wide Temperature Range plus Humidity with Surface Charge Control(SCC) Technology, ISPSD, 291~294 (2016)
- (4) Nakamura, K.: The test method to confirm robustness against condensation, EPE, No.17 (2019)