第5世代移動通信システム技術

中澤正幸* 中溝英之** 井浦裕貴** 友江直仁* 渡辺 光**

5th Generation Radio Communication System Technologies Masayuki Nakazawa, Hiroki Iura, Hikaru Watanabe, Hideyuki Nakamizo, Naohito Tomoe

要 旨

AI(人工知能)・IoT(モノのインターネット)時代のICT (Information and Communication Technology) 基盤と なる第5世代移動通信システム(5G)について,5Gの特長 である高速・低遅延・多数同時接続のうち,高速・低遅延 を可能にする高速・低遅延通信技術を開発した。

高速通信技術として、多素子アンテナとデジタルプリ コーディングを組み合わせて無線信号の空間多重数を上げ ることで周波数利用効率を向上させ、高速通信が可能にな るMassive MIMO(Multiple Input Multiple Output) 技 術を適用し、これまで三菱電機が培ってきた、アンテナ、 高周波回路、信号処理等の要素技術にシステム構築技術 を組み合わせることで、世界で初めて^(注1)屋外・移動環境、 28GHz帯16ビーム空間多重で、周波数利用効率67bps/Hz、 通信速度27Gbpsの実験に成功した。また、低遅延通信技 術として、高速演算回路の適用等によって、4Gの1/4以下 の低遅延となる無線フレーム長0.25msの信号処理を実現 した。

(注1) 2018年11月22日現在,当社調べ

28GHz帯16ビーム空間多重伝送によるSU-MIMO(Single User-MIMO)伝送実験

2020年に本格導入される5Gに向けて、高速・低遅延通信技術によって、世界で初めて屋外・移動環境、28GHz帯(500MHz帯域幅)、 16ビーム空間多重で、周波数利用効率67bps/Hz、基地局・端末間距離10mで通信速度27Gbps、100mで25Gbpsの実験に成功した。

1. まえがき

第5世代移動通信システム(5G)は、AI・IoT時代の ICT基盤として、スマートフォンだけではなく、4K/ 8Kデジタルサイネージ、自動運転、遠隔医療、産業機器 等への活用が期待されており、第4世代移動通信システム(4G)の規格上の最大伝送速度3Gbpsを大きく超える 20Gbpsの超高速伝送や、無線区間全体で4Gの1/10以下 となる1ms(無線フレーム長は4Gの1/4の0.25ms)の低遅 延伝送が要求されている⁽¹⁾。その実現方法の一つとして、 Massive MIMOの研究開発が盛んに行われている⁽²⁾。

当社は、これら高速・低遅延伝送の要求に対し、Massive MIMOの回路方式の一つであるハイブリッドビーム フォーミング⁽³⁾を用いて、16ビーム空間多重の高速伝送 を実現するとともに、演算アルゴリズム最適化や高密度 基板実装などによって、低遅延の信号処理を実現した。

本稿では、当社が開発した高速・低遅延通信技術、この 技術を実装した装置・システム構成、及び屋外での16ビー ム空間多重のMIMO伝送実験の結果について述べる。

2. 高速・低遅延通信技術

5Gの実用化には、4Gでも使用されている6GHz以下 の周波数帯に加え、広帯域幅を確保できる28GHz帯など の高周波帯が利用される。28GHz帯の利用では、同周波 数帯で大きくなる伝搬損失を補償しながら、同一周波数、 同一時間に複数信号を空間多重伝送するMassive MIMO が有効である。しかし、それを全てデジタル信号処理で実 現する場合、回路規模や消費電力が膨大になる。その解決 策として、アナログビームフォーミングとデジタルプリ コーディングを組み合わせたハイブリッドビームフォー ミングが有効となる。

当社は、256素子の多素子アンテナRF(Radio Frequency)モジュール(サブアレー)を16台用いて16ビームを形 成し、ビーム単位でデジタルプリコーディングを行うこ とによって、ビーム間干渉を低減するハイブリッドビーム フォーミング(図1)の開発を進めてきた⁽⁴⁾。これによって、 4096素子アンテナ(256素子アンテナ/サブアレー×16台

第5世代移動通信システム技術・中澤・井浦・渡辺・中溝・友江

分)による16ビーム形成を16素子アンテナ分のデジタルプ リコーディングと同等の低演算量の信号処理を実現した。 さらに,演算アルゴリズム最適化,搭載デバイス間の高 速データ伝送や高密度基板実装などの高速演算回路技術 によって,無線区間全体で1ms以下の遅延を可能にする 無線フレーム長0.25msの低遅延信号処理を実現した。

次に,ハイブリッドビームフォーミング実現に当たっ て,当社が適用した技術である"パネル型APAA(Active Phased Array Antenna)技術""可逆性プリコーディング 技術""ビーム制御技術"に関して述べる。

2.1 パネル型APAA技術

サブアレーとして利用するアンテナRFモジュールは多 素子アンテナとRFモジュールを持ち,RFモジュールに 搭載した移相器,可変利得増幅器で各素子の振幅,位相 を調整することによって,所望のアナログビームを形成 する。当社は,多素子アンテナと受動回路をプリント基 板で構成するとともに,移相器,可変利得増幅器等の能 動回路を同一基板上に高密度に表面実装することで,従 来のブリック型から容積と質量を減らすことが可能なパ ネル型APAAの技術を確立した。

図2に開発したパネル型APAAの構成を示す。表面に 256素子の多素子アンテナを形成している。また,裏面に 能動回路として,四つの移相器(6bit),可変利得増幅器, 合成分配回路を集積したRFコアICを16個配置し,RF コアIC一つに対して,四つの増幅器(HPA(High Power Amplifier)/LNA(Low Noise Amplifier)) IC(送受信切 替えスイッチ含む)を周囲に配置。また,各増幅器ICには 4合成/分配回路によって四つのアンテナ素子を接続し て,高密度実装を実現している。なお,4合成/分配回 路や給電回路などの受動回路は基板内蔵にしている。こ れによって,薄型化(モジュールの厚さ28mm(放熱フィン 除く))を実現した⁽⁵⁾。

2.2 可逆性プリコーディング技術

5Gで採用されている時分割複信(Time Division Duplex:TDD)システムでは、同一周波数をダウンリンクと

アップリンクの時分割で利用している。そのため、送受可 逆性によってダウンリンクの伝送路とアップリンクの伝送 路が同一となる。この送受可逆性を利用すればアップリン クで端末からフィードバックする伝送路情報が全く必要 なく、リアルタイムにダウンリンクの伝送路を推定できる。 しかし、上記送受の伝送路可逆性を実現するには、伝送路 だけではなく基地局のアナログ回路とデジタル回路を含む システム全体で、送信と受信で特性を合わせる必要がある。 当社は、独自の送受信回路校正技術によって送受の可逆性 を確保することで、刻々と変化する伝搬環境を基地局側で 測定することを可能にした。

これによって、基地局側で測定した伝送路情報を基に、 端末が受信する他端末向けのビームによる干渉をあらかじ めキャンセルするように基地局送信信号に重み付けを加え るデジタルプリコーディング⁽⁶⁾を行うことで、ビーム間の 干渉除去を可能にした。図3にビーム間干渉除去の効果を 示す。

2.3 ビーム制御技術

多素子アンテナを用いた場合,形成される指向性ビーム のビーム幅は狭くなるため,信号が届くエリアが狭くなり, 基地局が端末を初期捕捉・追従することが難しくなる。そ のため,ビームステアリングが重要な技術課題となる。当 社は,開発した256素子アンテナのビーム幅(半値角)約6°

図3. ビーム間干渉除去の効果

図4. ビーム制御による移動端末への追従(基地局視点)

に合わせて,通信エリアを63個のビームスポットに分割 してビーム制御を行う方式を開発した。各ビームスポット に対して基地局からビーム選択用参照信号を周期的に送信 し,端末がビームスポットごとに測定した受信電力レベル を基地局に通知。基地局がその受信電力レベル情報を基に 端末へのビーム制御を行うことによって,高速かつ安定的 な初期捕捉・追従を可能にした(図4)。

3. システム構成

2章の高速・低遅延通信技術を実装したMIMO伝送実 験のシステムを構築した。MIMO伝送実験システムの主 要諸元を表1に示す。送受信周波数は28GHz帯,システ ム帯域幅は500MHzであり,五つの100MHzコンポーネ ントキャリアで構成される。伝送方式は、サブキャリア間 隔75kHzの直交周波数分割多重(Orthogonal Frequency Division Multiplexing:OFDM)を利用した下りリンク/ 上りリンク比率が4:1のTDDシステムである。

MCS(Modulation and Coding Scheme)は、符号化率 R=3/4のQPSK(Quadrature Phase Shift Keying)からR =11/12の256QAM(Quadrature Amplitude Modulation) まで対応している。最大16ストリームの空間多重伝送が 可能であり、最大伝送速度は33.6Gbpsである。

実験は、基地局と端末を1台ずつ設置して端末に全16 ビームを向けて16ビーム空間多重通信を行うSU-MIMO 伝送実験、及び基地局1台に対して8台の端末を設置し、 各端末に向けて2ビームずつを向けて合計16ビーム空間 多重通信を行うMU-MIMO(Multi User-MIMO)伝送実 験を行った。

SU-MIMO伝送実験システム構成を図5に示す。基地局,端末共にアンテナRFユニット,送受信装置,モデム装置,データ生成/受信装置から構成されている。基地局のアンテナRFユニットは,偏波の異なる二つのパネル

項目		諸元
送受信周波数		28GHz带
システム帯域幅		500MHz
多重方式		TDD, 下りリンク時間占有率0.8
伝送方式		OFDM
サブキャリア間隔		75kHz
無線フレーム長		0.25ms
空間多重ストリーム数		16ストリーム
変調方式		QPSK, 16QAM, 64QAM, 256QAM
誤り訂正方式		LDPC符号
符号化率		3/4, 5/6, 11/12
基地局アンテナ		256素子×16サブアレー
端末数	SU-MIMO	1台
	MU-MIMO	8台
端末 アンテナ	SU-MIMO	16アンテナ/台
	MU-MIMO	4アンテナ/台

表1. MIMO伝送実験システムの主要諸元

LDPC : Low Density Parity Check

特集論文

型APAAを搭載した2ビーム超多素子アンテナRFユニッ トを8台用いている。端末のアンテナRFユニットは,偏 波の異なる二つの平面パッチアンテナを搭載した2アンテ ナRFユニットを8台用いて,合計16アンテナを構成して いる。送受信装置は,TRX(Transmitter and Receiver) 機能が搭載されており,デジタル信号を中間周波数6GHz 帯のアナログ信号に変換する機能を持っている。また,モ デム装置は,OFDM変復調処理,256QAM等の変復調処 理,誤り訂正符号化・復号化処理,デジタルプリコーディ ングの機能を持っている。

MU-MIMO伝送実験システム構成を図6に示す。基 地局の装置はSU-MIMO伝送実験システムと同一である。 一方,端末は1台当たり,2ストリーム空間多重伝送に対 応した装置を8台使用した。各端末のアンテナRFユニッ トは,送受信性能を向上させるための冗長度を持たせ,偏 波の異なる二つの平面パッチアンテナを搭載した2アンテ ナRFユニットを2台用いて,合計4アンテナを構成して いる。また,送受信装置とモデム装置を一体化し,1端末 当たり最大伝送速度4.2Gbpsに対応した装置になっている。

4. 実験結果

3章で述べたシステムによるSU-MIMO伝送実験,及び MU-MIMO伝送実験の実験結果を示す。どちらのMIMO 伝送実験も屋外で,基地局・端末間を遮蔽するような障害 物が存在しない見通し環境で実施した。

4.1 SU-MIMO伝送実験結果

SU-MIMO伝送実験は、基地局から約10mと100m離れ

図7.SU-MIMO基地局・端末の配置(10m地点走行時)

図8.SU-MIMO伝送実験環境と各端末位置での通信速度

た道路上で,端末を搭載した自動車を走行させることで実施した。基地局アンテナRFユニットは,道路に面する建物の壁面に地上から約8mの高さに設置した。また,端末のアンテナRFユニットは自動車のルーフ上の約2mの高さに設置した(図7)。

図8に各端末位置での通信速度の結果を示す。基地局 正面位置で、基地局・端末間距離10mで通信速度27Gbps, 100mで25GbpsのMIMO伝送実験に世界で初めて成功し た⁽⁷⁾。これは28GHz帯での移動通信方式で世界最高の周 波数利用効率となる1Hz当たり67bpsに相当する。

この実験結果によって、例えばバスなどの大勢の人が乗 車して移動する乗り物で、20Gbpsを超える高速・低遅延 通信の実現が期待できる。

4.2 MU-MIMO伝送実験結果

MU-MIMO伝送実験は、基地局・端末間距離が50m以 内となるエリアに8台の端末を配置して実施した。基地局 はSU-MIMO伝送実験と同じ配置である。端末は台車に 搭載し、アンテナRFユニットは台車上の約1.3mの高さに

図9. MU-MIMO基地局・端末の配置

図10. 基地局から見たMU-MIMO端末

図11. MU-MIMO 8端末合計通信速度の変化

設置した(図9)。8端末のうち,2端末は基地局から約 10m離れた道路上を移動させ,6端末はエリア内に静止 端末として配置した(図10)。

図11に端末2,及び7が移動した際の8端末合計通信 速度の変化の結果を示す。端末の移動に伴い,デジタルプ リコーディングによって形成されるビーム形状や端末間干 渉状態も変動するため,通信速度が時間変動するものの, 8端末合計の通信速度は平均20Gbps超を満足し,ピーク では24Gbpsを達成することが確認できた⁽⁸⁾。

この実験結果によって、例えば街中などのユーザー が密集するような環境で、ビーム間干渉除去によって、 20Gbpsを超える高速・低遅延通信の実現が期待できる。

5. む す び

5Gに向けた高速・低遅延通信技術とその技術を用い た28GHzでの16ビーム空間多重伝送の実験結果を述べた。 実験では、SU-MIMO伝送実験で27Gbps, MU-MIMO 伝送実験で24Gbpsを達成した。今後は、この開発で培っ た技術を様々な産業に活用し、社会の発展に貢献していく。 なお本稿には、総務省からの委託を受けて実施した"第 5世代移動通信システム実現に向けた研究開発"の成果の 一部が含まれており、関係各位に深く感謝の意を表す。

参考文献

- Recommendation ITU-R M.2083 : IMT Vision-Framework and overall objectives of the future development of IMT for 2020 and beyond (2015)
- (2) 奥村幸彦, ほか:第5世代移動通信システム実現に向けた研究開発,「電波資源拡大のための研究開発」第12回成果発表会(2019)
- (3) 岡崎彰浩, ほか:次世代無線アクセスに向けた高周波 数帯活用の一検討, 電子情報通信学会技術研究報告,
 114, No.86, RCS2014-81 (2014)
- (4) 鈴木邦之, ほか: 5G無線基地局向け28GHz帯超多素
 子アンテナシステム, 三菱電機技報, 92, No.6, 346~ 350 (2018)
- (5) 渡辺 光, ほか: 5Gにおける高SHF帯・広帯域Massive MIMO向けアンテナRFフロントエンドモジュールの開発, 電子情報通信学会 アンテナ・伝播研究会, AP2018-180 (2019)
- (6) 西本 浩, ほか:超多素子アンテナシステムでのマ ルチビーム空間多重・制御技術, 三菱電機技報, 92, No.5, 296~299 (2018)
- (7) 酒井 学, ほか: 5Gにおける高SHF帯・広帯域Massive MIMOシステムを用いたフィールド環境SU-MIMO伝送実験, 電子情報通信学会技術研究報告,
 118, No.435, RCS2018-277 (2019)
- (8) 井浦裕貴, ほか: 5Gにおける高SHF帯・広帯域Massive MIMOシステムの開発, 電子情報通信学会技術 研究報告, 118, No.474, RCS2018-332 (2019)