

山田哲太郎* 石川博章*** 小柳智之** 亀田洋志* 有岡俊彦**

Tsunami Prediction Technology by Data Assimilation Using Ocean Surface Radar Tetsutaro Yamada, Tomoyuki Koyanagi, Toshihiko Arioka, Hiroaki Ishikawa, Hiroshi Kameda

要 旨

近年,日本の沿岸部では,大地震の発生によって津波が 襲来することが懸念されている。津波が沿岸に到達する前 に,可能な限り早く精度良く到来を予測することは,効率 の良い避難行動や対応を行うために重要である。そのため, 津波の沖合での正確な波高値や流速値をリアルタイムで知 ることが課題となっている。従来,津波の波高値の観測手 段として,沖合に設置された津波観測ブイや海底水圧計を 用いる方法がある。しかし,海洋観測ブイは設置位置(点) での観測しかできないため,広範囲にわたり多数設置する 必要がある。

一方,海洋レーダは陸上から面的に広範囲の海の状況を 高い時間・空間分解能で観測できるため,日常の沿岸環境 監視での有用性が検証されてきた。特に沿岸部から遠い海 面を観測することによって、津波が到達するまでの時間を 確保できることもメリットの一つである。ただし、海洋 レーダが観測するのは視線方向の海表面の流速(表層流速) であり、表層流速から津波に起因する流速成分を抽出する 技術について、いまだ十分な開発がなされていなかった。

このような背景の下,三菱電機では従来の海洋レーダを 改良し,津波シミュレーションと海洋レーダの表層流速を 同化させた津波予測技術を開発した。このシステムによっ て,海洋レーダで観測される表層流速から津波の波高値や 流速値をリアルタイムに予測できる。

海洋レーダを用いた津波データ同化方式

津波監視用海洋レーダシステムは、海面に電波を送信して海面で反射した電波を受信するアンテナと、流速成分の算出や解析等を行う信号処 理装置で構成される。津波データ同化方式はレーダで観測された流速を基に津波シミュレーションによる数値計算を実施し、観測値と予測値を 同化することで高精度に津波の波高値と流速値を推定できる。

1. まえがき

近年,日本の沿岸部では,大地震の発生によって津波が 襲来することが懸念されている。津波が沿岸に到達する前 に,可能な限り早く精度良く到来を予測することは,効率 の良い避難行動や対応を行うために重要である。そのため, 津波の正確な波高値や流速値をリアルタイムで知ることが 課題となっている。海洋レーダは陸上から広い範囲の海の 状況を高い時間・空間分解能で観測できるため,日常の沿 岸環境監視での有用性が検証されてきた。特に沿岸部から 遠い海面を観測することで,津波が到達するまでの時間を 確保できる。

海洋レーダは、HF帯(短波帯(3~30MHz))の電波を海 面に照射し、散乱された信号を受信することで沿岸から数 十km先までの表層流速を観測する装置である。陸上に設 置したアンテナから海面に電波を照射すると、電波の波長 んの半分の長さの間隔を持つ波によって反射された電波 (反射波)は、位相がそろうことで強め合う。この現象を ブラッグ散乱共鳴という。反射波は受信信号としてアンテ ナに返ってくる。その受信信号を周波数解析し、得られた ドップラースペクトルでの一次散乱ピークの位置からドッ プラーシフト量を算出して表層流速を求める。なお、1台 の海洋レーダでは、海洋レーダに近づく方向又は遠ざかる 方向だけ、すなわち、一次元の視線方向の表層流速だけを 観測できる。

本稿では、1台の海洋レーダで観測した表層流速から津 波の波高値や流速値をリアルタイムで予測する技術につい て述べる。

2. 背 景

1台の海洋レーダによって観測できるのは表層流速の視 線方向成分だけであり,直接波高を推定することはできな い。沿岸に設置された海洋レーダは沖合の方向に電波を放 射し,ブラッグ散乱共鳴現象を利用して,レーダ覆域内の セル(レンジとビームの分解能単位)ごとの流速値を観測で きる。しかし,海洋レーダの流速値の観測誤差は大きく, また,電波環境の状況によって多重散乱や干渉波の影響等 で流速値を失検出や誤検出するという課題がある。

一方,海洋レーダを用いた津波の観測が試みられている⁽¹⁾。 海洋レーダでは流速値を観測することが可能だが,津波の 予測をする際には波高を計算する必要があり,海洋レーダ の流速値から波高を計算する手法が研究されている。しか し,海洋レーダの流速観測誤差が大きくて予測精度が劣化 するという課題がある。本稿では,海洋レーダの観測誤差 を考慮した上での津波の観測と予測性能の向上を検討の対 象とする。

津波は次の式(1),式(2),式(3)で表される浅水方程式に

従って伝搬することが知られている。

$$\frac{\partial M}{\partial t} + \frac{\partial}{\partial x} \left(\frac{M^2}{h}\right) + \frac{\partial}{\partial y} \left(\frac{MN}{h}\right) + gh \frac{\partial \eta}{\partial x} + \frac{gn^2}{h^{\frac{7}{3}}} (M\sqrt{M^2 + N^2}) = 0$$

$$(1)$$

$$\frac{\partial N}{\partial t} + \frac{\partial}{\partial x} \left(\frac{MN}{h}\right) + \frac{\partial}{\partial y} \left(\frac{N^2}{h}\right) + gh \frac{\partial \eta}{\partial y} + \frac{gn^2}{t^{\frac{7}{3}}} (M\sqrt{M^2 + N^2}) = 0$$

$$\frac{\partial \eta}{\partial t} + \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} = 0 \qquad (2)$$

ここで, x, yは二次元平面上の座標とし, hは水深, ηは 水位(波高), Mはx軸方向の流量, Nはy軸方向の流量, t は時間, gは重力加速度, nはマニング係数である。津波 は長波の一種であり, 鉛直方向の流速値が一定であると近 似できるため, 流量と流速は線形の関係で表現される。

海洋レーダによって観測できるのは表層流速の視線方向 成分だけであるが、津波を予測するためには津波の波高情 報が必要である。これに対して、当社では1台の海洋レー ダから得られる一次元の流速情報に浅水長波理論を適用す ることで津波の波高を予測する方式を検討している⁽²⁾。津 波伝播(でんぱ)解析で用いられる波高分布と流速分布に関 する基礎方程式である浅水長波理論を、1台のレーダから 得られる視線流速情報だけで解析できる一次元浅水方程式 としてモデル化し、この方程式を解くことで波高を推定し、 津波を予測する。しかし、浅水方程式の一次元化による近 似誤差と海洋レーダの流速の観測誤差の影響で津波予測に は課題があった。

本稿では,海洋レーダの観測誤差を考慮して津波の観測 性能と予測性能を向上させる方式を検討する。この方式に よって1台の海洋レーダで津波予測が可能になり,設置コ ストを半減できることが期待される。

3. 開発方式

2章で述べた課題に対して,海洋レーダを用いた津波 データ同化方式(以下"開発方式"という。)を開発した。開 発方式はレーダで観測された流速を基に津波シミュレー ションによる数値計算を実施し,津波シミュレーションの 予測値と海洋レーダの観測値をデータ同化させることで, 高精度に津波の流速と波高を推定できる。データ同化とは 数値シミュレーションと観測値を融合させる統計的推定手 法で,観測時刻ごとに観測誤差と予測誤差に応じて観測値 を修正することで,過去から現在までの観測情報を最大限 に活用しつつ,統計的に最適な予測値を算出できる。ここ で,データ同化には,状態推定モデルのカルマンフィルタ を用いた。

開発方式は、津波シミュレーションとデータ同化の二つ のブロックから構成される。津波シミュレーションでは、 図1のようにレーダ覆域を囲む数値計算メッシュ(図の黒 丸)上で水位とX軸,Y軸方向の流量(以下"状態ベクトル" という。)を計算する。ここでX軸方向の数値計算メッシュ 数を*I*,Y軸方向の数値計算メッシュ数をJとすると,状態 ベクトルの次元は*I*×J×3となる。

次の式(4)は現時刻kと次時刻k + 1の状態ベクトルの関係を表す予測モデルを示す。

従来方式ではレーダのビームごとに一次元の浅水方程式 に基づく津波の伝播計算を行っていたのに対して,開発方 式ではレーダ覆域の覆う二次元の数値計算メッシュ上で津

図1. レーダ覆域と数値計算メッシュ

⇒R×S×3の状態ベクトル
覆域に射影した状態ベクトル (線形補間)

図2. 状態ベクトルと観測ベクトルの関係

波の伝播を計算する。

次の式(5)にレーダの観測過程をモデル化した観測モデル を示す。

 $Z(k) = HX(k) + W \quad \dots \quad (5)$

ここで、Zは観測ベクトル、 $H(=B \times A)$ は観測行列、wは 観測誤差である。

図2に示すように、 $I \times J \times 3$ の状態ベクトルから、レー ダの観測点のセル(ここで、レンジ数R、ビーム数Sとす る。)を最近傍セルの選択や線形補完によって対応付けを行 う行列 $A(I \times J \times 3$ 列、 $R \times S \times 3$ 行)と、 $R \times S \times 3$ の覆域内 の状態ベクトルから視線方向の流速に射影する行列 $B(R \times S \times 3$ 列、 $R \times S$ 行)とする。開発方式では予測モデル(式(4)) と観測モデル(式(5))から計算されるカルマンゲインを用い て、予測と観測の誤差に応じて最適な割合で予測値と観測 値を同化させることで、高精度に津波の状態推定ができる。

4. シミュレーション評価

ここでは開発方式のシミュレーション評価を実施した内 容を述べる。シミュレーションシナリオは内閣府発表の南 海トラフ巨大地震モデル⁽³⁾のケース4を初期波源として非 線形浅水方程式を用いて津波の伝播を計算し,海洋レーダ による流速観測を模擬した。**表1**にシミュレーションの評 価条件を示し,図3に津波の初期波高の様子を示し,図4 にレーダ覆域の様子を示す。海洋レーダの周波数は低周波 帯を想定し,距離50km,方位120度の覆域内の津波流速 を観測間隔40秒で観測できるものとする。また,流速の 観測誤差は潮汐(ちょうせき)等の長周期成分のバイアス成 分は事前にフィルタリングされているものとして,短周期 成分を標準偏差0.07m/sの正規乱数を用いて模擬した。

開発方式のシミュレーション結果を図5から図8に示す。 図5,図6は中距離(30km),遠距離(42km)での現在フ

表1. シミュレーションの評価条件

項目	値	備考
レンジ間隔(m)	1,500	
レンジ数	34	
サンプリング間隔(s)	40	
ビーム数	14	
計算メッシュ数	3,600	60×60
観測雑音(標準偏差)(m/s)	0.07	

図3. 津波の初期波高の様子

観測ベクトル

レームでの津波推定結果を示し、上図は津波の推定流速を 示し、下図は推定流速の二乗平均平方根誤差(Root Mean Square Error: RMSE)を示す。流速のRMSEはモンテカ ルロシミュレーションを100試行行った結果から算出した。 図5、図6から、中距離、遠距離でも開発方式を適用する ことによって、時刻の経過とともに流速の観測誤差を低減 できることが分かる。

図7,図8は中距離(30km),遠距離(42km)での次フ レーム(40秒後)の津波予測結果を示し、上図は津波の予測 流速を示し、下図は予測流速のRMSEを示す。図7,図8

図8.津波予測結果と予測誤差RMSE(距離42km)

の上図から中距離,遠距離でも従来方式と比較して開発方 式の流速予測値のばらつきが小さいことが分かる。また, 図7,図8の下図から,開発方式は従来方式と比較して予 測のRMSEが小さく,予測誤差を低減できることが分かる。

5. む す び

海洋レーダの観測誤差を抑圧してレーダの観測領域での 波高値と流速値を高精度に予測・推定する津波データ同化 方式を述べた。シミュレーション評価の結果,南海トラフ の津波シミュレーションに対して開発方式は流速値の推定 誤差と予測誤差を低減できることを確認した。

参考文献

- Lipa, B., et al. : HF Radar Detection of Tsunamis, Journal of Oceanography, 62, 705~716 (2006)
- (2) 石川博章, ほか:海洋レーダーを用いた津波到達・波 高予測技術, 日本機械学会関西支部講演会講演論文集,
 91, 152~155 (2016)
- (3) 内閣府中央防災会議:南海トラフの巨大地震モデル検 討会,内閣府中央防災会議
 http://www.bousai.go.jp/jishin/nankai/model/