合成開口レーダ向け 圧縮センシング技術

星野赳寛* 岡田 祐*** Dehong Liu ** 原 照幸*

Compressive Sensing Technology for Synthetic Aperture Radar Takehiro Hoshino, Dehong Liu, Teruyuki Hara, Yu Okada

要 旨

衛星や航空機に搭載し,昼夜天候を問わずに地表面を 観測するセンサとして合成開口レーダ(SAR:Synthetic Aperture Radar)がある。合成開口レーダは広域観測に 適するが,総観測時間短縮のために観測領域の更なる拡大 が求められている。画質を劣化させずに観測領域を拡大す る広域高分解能化の要求があり,三菱電機が開発した衛星 だいち2号では,レーダ用の受信アンテナを二つに増やす ことで広域高分解能を達成した。しかしアンテナを二つに 増やすことは,すなわちダウンリンクされるデータ量もま た2倍になることを意味している。

昨今, 広域高分解能化につれてデータダウンリンクの容

量逼迫(ひっぱく)が課題となってきており、ダウンリンク にかかるデータ量の圧縮が求められている。データ量圧縮 が可能な技術の一つに圧縮センシングと呼ばれる2006年 から開拓された技術がある。

三菱電機では、今回、合成開口レーダ向けの圧縮センシ ング技術を開発した。従来に比べてデータ量を半分にした 場合でもデータ再構成が可能であることを電波暗室実験及 び航空機SAR実験で確認した。特に、航空機SAR実験で は偽像レベルが9.6dB抑圧されることを確認した。

この技術はSARセンサの小型・低コスト化等への活用 が見込まれ、省資源な宇宙開発への貢献が期待できる。

衛星搭載型合成開口レーダ向け圧縮センシング技術のコンセプト

圧縮センシングをSAR画像に適用することで、2倍の観測領域の観測が単一の観測領域のデータ量で実施可能となる。従来、アンテナ数及び データ量を2倍にすることで2倍の観測領域を広域高分解能で観測していた。今回、アンテナ数2倍でデータ量をそのままにした場合に相当す るSAR画像でも圧縮センシングを適用することで、2倍のデータ量で観測した場合と遜色ない画質が得られることを確認した。

1. まえがき

衛星や航空機に搭載し,昼夜天候を問わずに地表面を観 測するセンサとして合成開口レーダ(SAR)がある。SAR は広域観測に適するが総観測時間短縮のために観測領域の 拡大が求められている。画質を劣化させずに観測領域を 拡大するため,三菱電機が開発した衛星だいち2号では レーダ用アンテナを二つに増やして広域高分解能を達成し た⁽¹⁾。しかしアンテナを二つに増やすことは,すなわちダ ウンリンクされるデータ量も2倍になる。

広域高分解能化に伴いデータダウンリンクの容量逼迫が 課題となっており、ダウンリンクデータ量の削減も求めら れている。データ量削減が可能な技術として圧縮センシン グと呼ばれる技術が2006年から開拓された⁽²⁾。

三菱電機では、今回、SAR向けの圧縮センシング技術 を開発した⁽³⁾⁽⁴⁾⁽⁵⁾。従来に比べてデータ量を半分にした場 合でもデータ再構成が可能であることを電波暗室実験及び 航空機SAR実験で確認した。

2. 圧縮センシングの原理

2.1 サンプリング定理

E縮センシングは、サンプリング定理によるデータ量の 限界を突破する技術の一つである。サンプリング定理と は、ある周波数までのデータを忠実に再現する場合、その 2倍の周波数でサンプリングすればよいという定理であ る。例えば音楽CDのサンプリング周波数は44.1kHzであ るが、これは人の可聴域(22kHz以下)を再現するためで ある。これに対して圧縮センシングは44kHz未満のサン プリングでも22kHzのデータを再構成しようとする手法 である。図1にサンプリング定理を満たさない場合に周波 数の同定ができない例を示す。実線は真の波動を表し、丸 点はサンプリングで観測された信号を示す。破線は真の波 動と同じ観測値を持つ高い周波数の波動(偽像)である。丸 点の観測では実線と破線のどちらが真の波動か分からない。 2.2 ランダムサンプリング

図1の問題に対して,一般に圧縮センシングではサンプ リングをランダム化する方法がとられる。図2にランダム サンプリングした場合の様子を示す。丸点での観測で実線 と破線を区別して実線が真の波動であることが分かる。ラ ンダムサンプリングの観測値をフーリエ変換して周波数領 域で見ると,図1で現れていた高周波の偽像成分は拡散さ れて小さくなる。これを偽像のコヒーレンスが低下したと言う。

さらに圧縮センシングでは、求めるべき波動の数が疎 (スパース)であるとの前提で解を抽出する。言い換えると、 実際の観測では周波数領域で複数の成分が現れるが、これ らの成分の数が少なく、まばらに分布しているとの前提で ある(多くの場合この前提は良い近似である)。

2.3 SAR向け圧縮センシング

SARでは図1,図2の時間領域の横軸が軌道上の観測 位置(要旨の図の観測点),縦軸が地上の電波反射源から来 る電波の振幅に相当する。観測中心方向からの電波は変化 が緩やかで実線に相当し,観測中心から離れた反射源から の電波は変化が急峻(きゅうしゅん)で破線に相当する。観 測点が少ない場合は実線と破線の区別が付かない。仮に実 在する電波が観測中心からの電波(実線)だけだとしても, 破線の電波に相当する方向に偽像が発生することになる。

ランダムサンプリングが一つの解決手段であるが、実は SARの場合、観測中心から離れた反射源は観測点からの 距離変化が一様ではないため、その電波は観測点に対して 図3の破線のように変化する。したがって等間隔サンプリ ングでも実線と破線を区別することが可能である。これは 偽像成分(破線)のコヒーレンスが低下したと言え、フーリ エ変換後の偽像の強度レベルが下がる。さらに2.2節で述 べたように求める解はスパースであるとの前提で解(SAR 画像)を抽出する。これが今回開発したSAR向け圧縮セン シングの原理である。

図2. ランダムサンプリングによるコヒーレンス低下

図3. SARでのコヒーレンス低下

実験による原理検証

3.1 電波暗室Ka帯SAR実験での原理検証

この節では電波暗室内での実験によるランダムサンプリ ングによる圧縮センシングの原理検証結果を述べる。実験 では衛星や航空機に搭載したSARを模擬するため実験用 レーダを少しずつ動かして計測した。表1に実験の諸元を 示す。図4は電波暗室実験用レーダ及び観測対象の三面 コーナーリフレクタである。四つのKa帯ホーンアンテナ を用いており、今回は実験用レーダ(図4(a))の左上のアン テナを送信用、左下のアンテナを受信用として用いた。こ こでは、サンプリング率を、パルス繰り返し周波数をドッ プラー帯域幅で除算した値として定義する。1.0以上でサ ンプリング定理を満たすことに相当する。図5(a), (b), (c) は、それぞれサンプリング率7.0、1.4、0.5でのランダムサ ンプリング時の圧縮センシングによる再構成の前後の様子 を示している。ランダムサンプリングでは、サンプリン グ率が1.0以上、すなわち平均のサンプリング周波数がサ ンプリング定理を満たす場合でも,局所的にはサンプリン グ定理を満たさないために偽像を生じる様子が見て取れる。 特に図5(c)から、サンプリング率0.5としてサンプリング 定理を満たすサンプリング点数の半分からSAR画像を再 構成したことを意味する。

3.2 Ku帯航空機SAR実験での原理検証

この節では、データを等間隔に間引いたSAR画像の偽 像レベルを圧縮センシングによって改善する効果につい て述べる。図6は三菱電機が開発したKu帯航空機SARシ ステムである。航空機はダイヤモンドエアサービス社の Gulfstream-IIを用いた。表2に実験の諸元、図7に等間 隔にデータを間引いた場合のSAR画像、図8に等間隔に データを間引いた場合のSAR画像へ圧縮センシングを適 用した結果を示す。圧縮センシング適用によって、等間隔 にデータを間引くことでサンプリング定理を満たさなくな

図5. ランダムサンプリング時の再構成結果

(a) 信号送受信機(b) 送受信アンテナ図6. Ku帯航空機SARシステム

表2. 航空機SAR実験の諸元

中心周波数	16.45GHz
SAR画像分解能	10cm×10cm
データ間引き前のサンプリング率	1.2
データ間引き後のサンプリング率	0.6

図7. サンプリング定理を満たさない(サンプリング率0.6)の 航空機SAR画像

図8. 図7のデータに圧縮センシングを適用して再構成した画像

図9. サンプリング定理を満たす (サンプリング率1.2)の 航空機SAR画像

り発生した偽像が抑圧された様子が見て取れる。図9にサンプリング定理を満たすSAR画像を示す。図8と図9を

表3. 偽像レベル評価

サンプリング率1.2のSAR画像	- 58.7dB
サンプリング率0.6のSAR画像	- 35.9dB
圧縮センシングSAR画像	- 45.5dB

比較すると、圧縮センシングによって遜色なくデータが再 構成されている様子が見て取れる。画像を構成する真点の うち強度値が最大の点と、同点の偽像領域内で強度値が最 大の点の強度値比を偽像レベルとして定義し、**表3**にその 評価結果を示す。表から圧縮センシング適用前後で偽像レ ベルが-35.9dBから-45.5dBまで9.6dB抑圧された様子 を確認した。一方で、サンプリング定理を満たしたSAR 画像の偽像レベルは-58.7dBであることから、圧縮セン シングによる偽像レベル改善には13.2dBの改善余地があ ることも確認した。

4. む す び

合成開口レーダ向け圧縮センシングの基礎検討の結果, 従来に比べてデータ量を半分にした場合でも,圧縮センシ ング技術によってデータが再構成できることを電波暗室及 び航空機でのSAR実験から確認し,特に航空機SAR実験 では偽像レベルが9.6dB改善されることを確認した。一方 で,13.2dBの改善余地があることも確認した。この技術 はSARセンサの小型・低コスト化等への活用が見込まれ, 省資源な宇宙開発への貢献が期待できる。

参考文献

- (1) 陸域観測技術衛星2号,だいち2号(ALOS-2),三菱 電機技報,89, No.1, 15 (2015)
- (2) Eldar, Y.C., et al. : Compressed Sensing, Cambridge University Press (2012)
- (3) Liu, D., et al. : Synthetic aperture imaging using a randomly steered spotlight, IEEE IGARSS, 919 \sim 922 (2013)
- (4) 星野赳寛, ほか: 圧縮センシングを用いたSAR 画像
 再構成に関する原理検証, 電子情報通信学会総合大会,
 B-2-44 (2016)
- (5) Hoshino, T., et al.: An Experimental Study of Compressive Sensing for Synthetic Aperture Radar, IEICE SANE2016-77, 133~137 (2016)