5G無線基地局向け28GHz帯 アンテナ・RFモジュール

友江直仁*	中潮	북英之***
中澤正幸*	堤	恒次***
山口 聡**		

28GHz band Antenna and RF Module for 5th Generation Radio Base Stations Naohito Tomoe, Masayuki Nakazawa, Satoshi Yamaguchi, Hideyuki Nakamizo, Koji Tsutsumi

要 旨

急増する移動通信のトラフィック対策,多種多様なサー ビス,アプリケーションの実現に向け,2020年以降の実 用化が期待される第5世代移動通信システム(5G)の研究 開発が急務となっている。

このような背景の中,三菱電機は,多素子アンテナと MIMO(Multiple Input Multiple Output)を組み合わせて 空間多重数を増やすことで飛躍的に周波数利用効率を向 上させ,超高速伝送を実現することが期待されるMassive MIMOの実用化を目指した研究開発を行っている。

(㈱NTTドコモと当社が,総務省の採択を受けて研究開 発を行っている,28GHz帯Massive MIMOに適用するア ンテナ・RF(Radio Frequency)モジュールでは,次の2つ を実現した。

- (1) 28GHz帯アンテナ・RFモジュールのサイズ120×240× 28(mm)
- (2) 28GHz帯で広角まで高精度なビームを形成

5Gで期待されるサービスイメージと5G無線基地局向け28GHz帯アンテナ・RFモジュール試作機

2020年以降の実用化が期待される5Gに向けて、Massive MIMO基地局に適用する28GHz帯アンテナ・RFモジュールを開発した。サイズ120×240×28(mm)の小型化を実現するとともに、28GHz帯で広角まで高精度なビーム形成が実現できることを実測で確認した。

耒 1

1. まえがき

第5世代移動通信システム(5G)では,第4世代移動通 信システム(4G)の規格上の最大伝送速度3Gbpsを大きく超 える,20Gbpsの超高速伝送が要求されている⁽¹⁾。

この実現には、多素子アンテナとMIMOを組み合わせ て空間多重数を増やすことで飛躍的に周波数利用効率を向 上できるMassive MIMOが有効となる⁽²⁾。

Massive MIMOを実現する回路方式として、当社では、 アナログビームフォーミングとデジタル信号処理とを融合 させることで空間多重数の増加と演算量の削減を実現でき るハイブリッドビームフォーミング方式を提案し、開発を 進めている⁽³⁾⁽⁴⁾。

本稿では、このハイブリッドビームフォーミング方式に 対応したアナログビームフォーミングを担う、5G無線基 地局向け28GHz帯アンテナ・RFモジュールの仕様、及び 試作結果について述べる。

2. モジュール仕様

アンテナ・RFモジュールの主要諸元を表1に示す。送 受信周波数は28GHz帯,変調信号帯域幅を800MHzとし, 高周波数帯における伝搬損失を補償するために,256素子 を搭載し,28dBi以上の高アンテナ利得を確保する。

アンテナ・RFモジュールの構成を図1に示す。アンテ ナ・RFモジュールは、主に、多素子アンテナ部、RF回路 部、周波数変換IC、電源・制御IC、外部装置との各種イ ンタフェース用コネクタから構成される。多素子アンテナ 部は256の素子アンテナから構成されたアレーアンテナで あり、各素子アンテナからの放射電力を端末方向に向けて 空間合成することによって、指向性の鋭い高利得なビーム を形成する。基板上には、RF回路部、周波数変換IC、電 源・制御IC、RF・電源・制御コネクタを実装しつつ、基 板内層で、アンテナ給電回路、フィルタ、及び分配・合成 器などの受動回路が形成され、アナログビームフォーミン グに必要なRFの各機能が高密度に集積化される。

ここで、RF回路部は、多素子アンテナ部の背面、かつ 多素子アンテナ部の専有面積内に収まるように実装される。 また、多素子アンテナ部とRF回路部の各素子は基板内層 に形成された給電線路で互いに接続される。この構成に よってアンテナ・RFモジュール全体の薄型化と低損失化、 一体形成による低コスト化を可能にする。

アンテナ・RFモジュールでのRF回路部の構成を図2に 示す。RF回路部は、主にRF信号を増幅する電力増幅器 IC,及び低雑音増幅器IC,RF信号の位相や振幅を制御す る移相器と利得可変回路を内蔵するRF-ICで構成される。

RF回路部では、アンテナの多素子化に伴い、低消費電力化、小型化が課題となる。特に電力増幅器ICの消費電

項目	諸元	
送受信周波数	28GHz帯(27.5~29.5GHz)	
変調信号帯域幅	800MHz	
アンテナ方式	プリンテッドパッチアレー	
アンテナ素子数	256素子	
アレー配列	垂直: 16, 水平: 16	
アンテナ利得	28dBi以上	
偏波方向	+45degree又は-45degree	
ビーム走査角度	垂直: ±12degree, 水平: ±45degree	
サイズ	120×240×28(mm)(放熱フィン除く)	

アンテナ・BFモジュールの主要諸テ

図2. RF回路部の構成

カは、アンテナシステム全体の消費電力への寄与が大きい ことから、電力増幅器ICにはGaAs(ガリウムヒ素)プロセ スを用いることで高効率化を図る。また、RF-ICはRF回 路部全体のサイズに大きく寄与するため、高集積化によ る小型化に適したCMOS(Complementary Metal Oxide Semiconductor)プロセスを用いるとともに、高精度に ビーム形成を行う上でキーデバイスとなる移相器はアク ティブ方式によって移相精度向上を図っている。

3. 試作結果

2章で述べたモジュール仕様の実現に向け,28GHz帯 で小型かつ高精度ビーム形成を検証するためのアンテナ・ RFモジュールを試作した。当社では2015年度,高SHF (Super High Frequency)帯向け要素回路技術開発⁽⁵⁾を 15GHz帯で実施しており,今回試作したモジュールには, 15GHz帯での開発で培った回路技術を発展させて適用し た。ここでは,このモジュールによるビーム形成に関する 技術の開発結果について述べる。

28GHz帯の高周波数帯では自由空間伝搬損失が大きい ため、それを補償するためにアンテナには高い利得が求め られる。そこで、素子アンテナ数を15GHz帯の64素子か ら256素子の4倍に拡大して利得を向上させた多素子アン テナ部を開発した。多素子アンテナ部の専有面積は約9× 9(cm)、アンテナ素子間隔は0.54波長である。多素子ア ンテナ部の正面方向利得を試作評価した結果を図3に示す。 28GHz帯での多素子アンテナ部の動作利得は28.8dBi以上 であることを確認した。

高精度なビーム形成を行う上では、各素子の信号の位相 を制御する移相器がキーデバイスとなる。このモジュー ル開発で、15GHz帯要素回路開発で培った回路技術を基 に、28GHz帯の信号の位相を制御する6ビットのベクト ル合成型移相器を開発した⁽⁶⁾。図4にベクトル合成型移相

図4. 移相器の構成

器の構成を示す。入力信号を位相が90degree異なるI信号 とQ信号に分配し、それぞれの極性と利得を可変利得増幅 器(VGA: Variable Gain Amplifier)で制御した後に合成 することで所望の移相量を得ることができる。この移相器 開発では、15GHz帯で開発した移相器と比較し、移相量 誤差を低減できる回路方式を新たに開発した。図5に、今 回開発した移相器におけるVGAの構成を示す。複数の差 動対を並列した構成であり、差動対Pの数に応じて利得を 制御する。利得制御に応じて、差動対Pの逆相で動作する 差動対Nの数も併せて制御することで、位相制御に伴う入 カインピーダンス変動を抑えることができ、移相量誤差 の低減が可能となる。この移相器を、65nmCMOSプロセ スを用いて試作した。評価の結果.28GHz帯での位相誤 差は1.2degree rmsであり、15GHz帯で開発した回路方式 (1.7degree rms)に比べて位相制御誤差を低減できること を確認した。

また, RF回路部の小型化のため4素子の移相器を集積したRF-ICを開発した(図6)。チップサイズは, 7.2×5.3(mm) となっている。

図5.移相器に用いるVGAの構成

図6.4素子の移相器を集積したRF-ICのチップ

図7. RF回路部での位相制御特性

図8. アンテナ・RFモジュールの放射パターン測定結果

アンテナ・RFモジュールでは,先に述べた4つの移相 器を集積したRF-ICを16個搭載した。256素子のアンテ ナに対し,4素子ごとに束ねて1つの移相器に接続する ことで,RF回路部の小型化を実現している。RF回路部の 各素子の位相制御特性を評価し,ビーム形成に十分な特性 を得ることを確認した。図7に,試作したモジュールの RF回路部での位相制御特性の評価結果を示す。64(6ビッ ト)の位相設定状態にて広帯域で高線形な位相制御が実現 できることを確認した。

試作したアンテナ・RFモジュールの放射パターン 特性を電波暗室内で評価した。水平面で主ビーム方向 を-45degreeから+45degreeまで15degree刻みで変 化させた7状態の測定結果を図8に示す。グラフの縦軸 は0degreeビームの値で規格化している。このモジュール の校正には素子電界ベクトル回転法⁽⁷⁾を用いた。広角まで 指示角どおりにビーム走査が可能であることが確認できる。 指示角に対する主ビーム方向の誤差は、0.6degree rms 以下である。これらから、28GHz帯で広角まで高精度な ビームを形成できるアンテナ・RFモジュールを実現した。

4. む す び

超高速伝送の実現に向けて開発中のMassive MIMO基 地局に適用するアンテナ・RFモジュールの仕様と試作結 果について述べた。今後は、Massive MIMOの基地局開 発・フィールド試験で、周波数利用効率の高いMassive MIMO技術を確立し、2020年以降のトラフィック対策、 多種多様なサービス、アプリケーションの実現に貢献する。 この論文には、総務省からの委託を受けて実施した"第 5世代移動通信システム実現に向けた研究開発"の成果の 一部が含まれており、関係各位に深く感謝の意を表す。

参考文献

- Recommendation ITU-R M.2083(IMT Vision) : Framework and overall objectives of the future development of IMT for 2020 and beyond(2015)
- (2) 奥村幸彦, ほか:将来無線アクセス・モバイル光ネットワークの構想, 電子情報通信学会技術研究報告, RCS2013-231/232 (2013)
- (3) 岡崎彰浩, ほか:次世代無線アクセスに向けた高周波 数帯活用の一検討, 電子情報通信学会技術研究報告, RCS2014-81 (2014)
- (4) 友江直仁, ほか:第5世代移動通信システム向け無線
 アクセス基地局技術, 三菱電機技報, 90, No.6, 342
 ~346 (2016)
- (5) 中溝英之, ほか: 5Gにおける高SHF帯・広帯域 Massive MIMO向け超多素子アンテナシステムの 要素技術, 2016年電子情報通信学会 通信ソサイエ ティ大会, BCS-1-8 (2016)
- (6) 山本 航, ほか: 5 Gにおける高SHF帯・広帯域
 Massive MIMO向け28GHz帯高精度6ビットベクト
 ル合成型移相器, 2017年電子情報通信学会総合大会,
 C-2-20 (2017)
- (7) 真野清司, ほか:フェイズドアレーアンテナの素子 振幅位相測定法―素子電界ベクトル回転法―, 電子 情報通信学会論文誌(B), J65-B, No.5, 555~560 (1982)