雲観測用Kaバンドレーダ

松田知也* 柿元生也*

Cloud Radar Tomoya Matsuda, Ikuya Kakimoto

要 旨

気象レーダは、パルス状の電波をアンテナから照射して、 同じアンテナで降水粒子の後方散乱波を受信することで、 その位置・降雨強度及び移動速度を測定する装置である。 国内では、主にCバンド(5GHz帯)の周波数を用いること で、レーダ中心から半径200~300kmのエリアを測定して いる。また、最近では、都市域を中心としたゲリラ豪雨の 早期観測用としてXバンド(9GHz帯)の周波数を用いたレ ーダが整備され、レーダ中心から半径80kmまでの距離を 測定しており、人口が集中している地域により高精度な降雨 情報をほぼリアルタイムで配信することが可能になってきた。 一方、Cバンド・Xバンドの周波数では降水粒子より小 さいターゲットを捕らえることができないため、ゲリラ豪 雨を事前に察知するために必要な発達中の積雲などの雲を 捉えることができない。三菱電機では、この問題を解決す るため、雲の発達段階から雲粒子や氷晶粒子を捉えること ができるKaバンド(35GHz帯)の周波数を用いた雲観測用 Kaバンドレーダの開発を行ってきた。ゲリラ豪雨発生前 の積乱雲の様子を事前に測定可能なKaバンドレーダを活 用することで、降雨前の予報精度の向上に貢献し、更なる 防災・減災ニーズに役立つことが期待される。

雲レーダのシステム構成と外観

左の図は当社が開発した雲レーダのシステム構成を示し、右の図はその外観を示す。アンテナ背面に送信装置・受信装置を配置することで、 アンテナと送信・受信装置間の損失を従来機より低減している(2013年度に名古屋大学に納入)。

1. まえがき

当社は、パルス状の電波をアンテナから照射して降水粒 子の後方散乱波を受信することで、その位置と移動速度を 測定する気象レーダの開発・製造を行っている。

気象レーダは、国内では主にCバンド(5 GHz帯)の周波 数を用いることで、レーダ中心から半径200~300kmにわ たるエリアの降雨強度、及び降雨のドップラー速度を測定 することが可能であり、気象庁では20台のCバンド気象レ ーダを配置して日本全国をカバーしている。また、最近で は、ゲリラ豪雨の早期観測用として国土交通省が"X-RAIN"というXバンド(9 GHz帯)の周波数を用いたレーダ を都市域を中心に配備することで、人口が集中している地 域を中心に、より精密な降雨情報を配信することが可能と なってきた。

2. Kaバンドレーダの必要性

2.1 気象レーダで使用する周波数とMPレーダ

先に述べたとおり、気象レーダは、国内では主としてC バンドとXバンドの周波数が用いられているが、どちらを 用いるかは1台のレーダの観測範囲及びレーダシステムの 規模との関係で決定される。また、電波は周波数が高くな ると降雨の減衰の影響を受けやすくなり、電波が遠くまで 到達しない。このため、降雨粒子をターゲットとする気象 レーダは、高い周波数ほど長距離観測には適さない。Xバ ンドレーダも降雨減衰の影響を受けやすい周波数とされて いるが、一方でCバンドレーダに比べて波長が短い分、電 波が降雨を伝播(でんぱ)する途中で受ける位相の変化に敏 感であるという特徴がある。近年、水平偏波と垂直偏波を 同時に発射して受信した両偏波の振幅比や位相差を用いる ことで、単に受信強度だけで雨量強度を測定するよりも格 段に高い精度でこれを測定できる方式が実用化された。日 本では、この技術を用いたレーダをマルチパラメータレー ダ(MPレーダ)と呼んでおり、Xバンドレーダではこの技 術を適用することで観測精度を高めている。また、MPレ ーダは偏波の比の特徴を用いて雨と雪の判別も行うことが でき、Cバンドレーダにも適用されつつある。

2.2 降雨ステージとKaバンドレーダの役割

一般的な降雨現象の流れは、図1に示すとおり大きく4つ のステージに分類される。

(1) プレストームステージ

上昇気流が発達して水蒸気が対流圏上部に供給される。 (2) 雲ステージ

供給された水蒸気によって、雲が形成される。

(3) 降水ステージ

更に下層から水蒸気が供給されることで雲から降水粒子 が生成され、降雨をもたらす。

(4) ポストストームステージ

雲が衰退して降雨が消滅する。

降水ステージでは、気象レーダの降雨観測によって1~ 10分間隔で降水情報を取得できるが、特にゲリラ豪雨のような局地的大雨では、強降雨が観測できた時点で既に手遅れである事象も起き得る。これを回避するためには、降水 粒子を観測する前、つまり雲ステージでその兆候を捉える ことが解決手段の1つとして有効である。

当社は, 雲ステージの状態を捉える最も有効なレーダと してKaバンド(35GHz帯)レーダの開発を行ってきた。Ka バンドレーダは, 雲・霧といった直径数十µmの粒子を捉 えることが可能な反面, 先に述べたとおり周波数が高いた め降雨の減衰の影響を受けやすい。そのため, アンテナ開 口及び送信電力を可能な限り大きくすることでレーダ中心 から半径30kmの雲及び降水粒子を捉えるコンセプトで開 発を行ってきた。

図2.2000年度に開発したKaバンドレーダ

3. Kaバンドレーダの開発

3.1 1990年代での開発

当社は、1990年代末から2000年代初めにそれぞれ独立に 京都大学との共同研究でKaバンドレーダ(ミリ波ドップラ ーレーダ)の開発(図2),及び防災科学技術研究所向けの Xバンド・Kaバンド・Wバンド(95GHz帯)多周波観測レー ダの開発を行ってきた。当時では、アンテナ開口が2mの Kaバンド(35GHz帯)としては大きなアンテナに加えて、 100kWの高い送信出力を得るためにマグネトロン管を採 用した。図3は、当社が開発したKaバンドレーダを用い て釧路で実施した海霧を観測した例である。

3.2 2010年代での開発

当社が開発したKaバンドレーダは積乱雲・霧の観測を 主用途としていたが,注目度は決して高くなかった。しか し,近年,Xバンドで二重偏波レーダ(MPレーダ)の普及 によって粒子判別方法の技術が確立され始め,この成果を Kaバンドでも活用すれば雲ステージの正確な観測も可能 になることから,再び注目を集めるようになってきた。そ の結果,名古屋大学が1式(2013年度納入),防災科学技術 研究所が5式(2014年度納入)のKaバンドレーダの調達を 行うことなり,当社がこれを受注・開発することとなった。

新たに開発したKaバンドレーダの主な諸元を表1に示 す。今回開発したレーダは、初代と比較して大きく2点の 改良を行っている。まず1点目は、送信管に性能が安定し ているEIK(Extended Interaction Klystron)を採用したこ とである。EIKの出力は3kWであり、初代で用いていた マグネトロン(100kW)と比較すると1/30以下の出力とな るが、Xバンドレーダで培ったパルス圧縮方式を採用する ことで、比較的低出力な送信電力にもかかわらずマグネト ロンと同等出力の性能を発揮させることに成功した。次に 2点目として、Kaバンドという高い周波数で問題となる レーダ装置内の伝送ロスを極力軽減するために、送信機及 び受信機とアンテナ間の距離を可能な限り近づける工夫を

図 3. 2001年8月にKaバンドレーダで観測 (釧路の海霧を三次元で表示)

圭	1	冊	ι.		Ľ,	π	<u></u>	+>	≣≠≱	-
<u>4</u>	L	去	\sim	_	~	v	Ŧ	ራ	韶	ル

	-					
レーダ・タイ	'プ	二重偏波ドップラーレーダ				
観測範囲		半径30km				
送信周波数		34.815~34.905GHzのうち1波				
W. E	短パルス	0.5µs∕1.0µs				
运信 パルス幅	長パルス	30µs/55µs/80µs/100µs (短パルス相当にパルス圧縮)				
送信管,送信	言尖頭電力	EIK, 3kW(EIK出力端)				
感度		二重偏波モード:-17dBZを距離20kmでS/N>3dB で検出可能				
空中線駆動 駆動速度	ē囲,	水平方向:360°,最大36deg/s, 仰角方向:180°,最大12deg/s				
ビーム幅		0.4°以下				
距離分解能		75/150m				
出力データ		受信強度・レーダ反射因子(水平偏波・垂直偏波), 速度・速度幅,偏波間位相差・偏波間相関係数				
消費電力, 竇	〔量	12kVA以下, 4 t以下				

S/N: Signal-to-Noise ratio

行ったことである。具体的には、アンテナの背後に送受信 機を配置するという、気象レーダとしてはユニークな構造 を採用した。これら2点によって、初代と比較して約10 dBの能力向上を図っている。なお、今回開発したKaバン ドレーダでは、送信機・受信機とこれらを動作させる電源 部もアンテナ背面に配置して、水平方向にアンテナと一緒 に駆動する装置構成となっている。

4. Kaバンドレーダでの観測例

 図4,図5に名古屋大学で観測した例(受信強度)を示す。
図4はPPI(Plan Position Indicator)方式,つまりアンテナ 方向を仰角20度に保ちながら方位角方向に360度のスキャンを行って得られた観測例である。また図5はRHI (Range Height Indicator)方式で,アンテナ方向を方位角 270度(西方向)から鉛直経由で90度(東方向)に垂直スキャンして得られた観測例である。これらの観測によって,地

図7. 局地的大雨が発生するメカニズムを捉えるための将来構想

上付近では降水がなく,高度6~12kmに存在する粒子(つまり雲粒子)を的確に捉えていることが分かる。

ドップラーライダ

図6は、RHI方式で観測した二重偏波パラメータ(垂直 偏波と水平偏波との相関係数)の例である。高度2.5km前 後で相関係数が低い層が観測されていることが分かるが、 これは氷の粒と融(と)けた水滴が混在する融解層(0℃層) と呼ばれる部分である。この観測結果は、二重偏波技術を 用いることで雲とは異なった粒子(氷・雪など)の判別が可 能になることを示している。

5. む す び

気象レーダは、近年の降雨災害の増加をきっかけに二重 偏波レーダによる定量観測化技術が発達したことで高機能 化が進んでいる。この高機能化の動きに伴い、降雨観測用 途である気象レーダの応用となる、雲観測用Kaバンドレ ーダも注目をあびるようになってきた。

さらに、同じく当社が開発しているドップラーライダ (パルス状の光を送信して、空気中のエアロゾル(塵(ちり)) からの反射光を受信して観測を行う装置)は、晴天時の気 流を観測することが可能である。これによって,湿った上 昇流の発生などを検知できる可能性が広がる。

図7は、ゲリラ豪雨のような局地的大雨が発生するメカ ニズムを捉えるための実験構想図である。積乱雲の発達前 ではドップラーライダ、発達段階ではKaバンドレーダを 用いて非降水時の状態を観測し、Xバンド及びCバンドレ ーダによる降雨観測に引き渡すことで、降雨ステージの生 成から消滅までを捉える観測システムが構築できる。この 観測システムを用いた研究成果として、局地的大雨の1時 間前予測の実現など、防災・減災社会の実現の一助になれ ば幸いである。

参考文献

- Hamazu, K., et al.: A 35-GHz Scanning Doppler Radar for Fog Observations, J. Atmos. Oceanic Technol., 20, 972~986 (2003)
- (2) 篠田太郎, ほか:名古屋大学Kaバンド雲レーダの諸 元と初期観測結果,日本気象学会2015年度春季大会講 演予稿集,D158 (2015)