温室効果ガス観測技術衛星2号(GOSAT-2) のミッション機器

上野信一* 中野貴敬*

Mission Instruments for Greenhouse Gases Observation Satellite-2(GOSAT-2) Shinichi Ueno, Takayuki Nakano

要 旨

温室効果ガス観測技術衛星2号(Greenhouse gases Observing SATellite-2:GOSAT-2)は、日本が欧米に 先駆けて2009年1月に打ち上げた世界初の温室効果ガス観 測専用衛星"いぶき(GOSAT)⁽¹⁾⁽²⁾の後継衛星として開発が 進められている。

GOSAT-2は、ミッション機器として温室効果ガス観測 センサ 2 型 (Thermal And Near infrared Sensor for carbon Observation/Fourier Transform Spectrometer 2: TANSO-FTS-2)と雲・エアロゾルセンサ 2 型 (Thermal And Near infrared Sensor for carbon Observation/Cloud and Aerosol Imager 2: TANSO-CAI-2)の 2 種類のセン サが搭載される。

TANSO-FTS-2センサは、二酸化炭素やメタンなどの

温室効果ガスをフーリエ分光法で観測する。TANSO-FTS-2では,前号機に対して①センサ開口の拡大による 観測データの品質向上,②観測波長領域の拡張による一酸 化炭素の観測データ追加,③雲領域の回避観測による有効 観測データ数の増加の性能向上を行う。

TANSO-CAI-2は, TANSO-FTS-2で二酸化炭素を 測定する際に誤差要因となる雲の有無の判定やエアロゾル (大気粒子状物質)の測定に用いる画像センサである。 TANSO-CAI-2は,前号機に対して①直下視観測から前 方/後方視観測への観測方向の変更及び増加,②観測波長 領域追加によるブラックカーボンやPM2.5等の微小粒子状 物質の観測,③短波長赤外領域バンドの観測幅の拡大の性 能向上を行う。

温室効果ガス観測技術衛星2号(GOSAT-2)の形状とミッション機器搭載状況

X方向が衛星の進行方向である。-Y方向が太陽光が当たらない面となるため、2つのミッション機器(TANSO-FTS-2及びTANSO-CAI-2)の放熱面は-Y方向に設置されている。+Z方向が地球面方向であり、センサは+Z方向を観測方向としている。

1. まえがき

本稿では、国立研究開発法人 宇宙航空研究開発機構 (JAXA)の指導の下、当社が開発を進めている温室効果ガス 観測技術衛星2号(GOSAT-2)に搭載されるミッション機 器TANSO-FTS-2センサ(以下"FTS-2"という。)と TANSO-CAI-2(以下"CAI-2"という。)について述べる。

2. FTS-2センサ

2.1 FTS-2センサの構成

FTS-2センサの主な仕様を表1に, 観測対象を表2に, 構成を図1に示す。FTS-2は,大きくセンサユニットと 電気回路ユニットの2つに分けられる。

センサユニットは, 製造性を高くするためにモジュール 化された構造である。そのモジュール構成を図2に示す。 センサユニットは大きくスキャナアセンブリ構造(SSA)と 光学結合アセンブリ構造(IOA)の2つに分かれる。SSAは, 観測地点を決定するスキャナと光源, 観測時に雲領域を回 避するための視野画像を撮影するモニタカメラと迷光を抑

		バンド1	バンド2	バンド3	バンド4	バンド5		
分光方式		フーリエ分光方式						
波数範囲(cm ⁻¹)		12,950~ 13,250	5,900~ 6,400	4,200~ 5,200	1,188~ 1,800	700~ 1,188		
带域外波数範囲 (cm ⁻¹)		<12,750 >13,450	<5,100 >6,800	<4,100 >5,500	<1,000 >3,800	<600 >1,300		
サンプリング間隔(cm ⁻¹)		0.2						
有効サンプリング点数		153,090	76,	545	38,400			
偏光観測		あり			なし			
	ケース1	>400	>300		>3	300		
S/N比	ケース2	>650	>500		>1	NA		
	ケース3	>200	>150		>NA			
ILS半值全幅(cm ⁻¹)		≦0.4	0.4 ≦0.27					
消費電力(平均/最大)		≤200W/≤350W						
質量		≤225kg						
残存確率(5年後)		≥0.85						
NA : Not Applicable						pplicable		

表1. FTS-2の主な仕様

表2.FTS-2の観測対象

バンド	波数	主な観測対象
1	12,950~13,250	O_2
2	5,900~6,400	CO ₂ , CH ₄
3	4,200~5,200	CO, CO ₂ , H ₂ O
4	1,183~1,800	CH ₄ , H ₂ O
5	700~1,183	CO2, 温度

図1. FTS-2センサの構成

制するためのシールド構造でできている。IOAは,干渉計, 光学系,検出器などの光学素子と検出器を冷却するパッシ ブクーラ,アナログ信号処理回路部などで構成されている。 FTS-2全体はアメリカ海洋大気庁の気象衛星Suomi NPP

(National Polar-orbiting Partnership)に搭載されたCrIS (Cross-track Infrared Sounder)をベースに設計を行って いる。干渉計は、いぶきの設計をベースにしているが、特 に次の3つの点で向上を図っている。

- (1) 干渉計の開口径: φ68mm→φ77mm拡大によるS/N
 比(Signal-to-Noise ratio)の向上
- (2) レーザアライメント:ピックアップミラーのモノリシック化や集光レンズ追加によるロバスト性向上
- (3) フリンジカウント:ハーフフリンジカウントによる精度向上

オンボードでの信号処理フローを図3に示す。時間に同 期した,等時間サンプリングによってインターフェログラ ムへ変換する。また,等時間サンプリングのインターフェ ログラムの取得は,出力データ周波数に対して5~12倍の オーバーサンプリングを行う。サンプリングは14bitの ADC(Analog-to-Digital Converter)で行い,データビッ ト数をバンド1~3は16bit,バンド4,5は18bitに向上 させて出力する。これは,エイリアシングの抑制や量子化 誤差の低減に非常に有効である。

2.2 FTS-2センサの性能見積り

TANSO-FTS-2のS/N比の見積り結果を図4に示す。 性能評価での入射輝度は3ケース設定(表3)されており (ただし、バンド4、5はケース1だけ),それぞれの条件 でS/N比を算出しているが、ここではケース1の算出結果 を示す。実線が要求仕様値である。バンド1~3はS/P (Senkrecht/Parallel)波のいずれかの観測光に対してS/N 比要求を満足していれば良く、S/N比が高いS波観測の見 積り結果を示している。バンド1~5の全ての条件でS/N 比が要求仕様を満足している。

表4に,装置関数の見積り結果を示す。要求仕様を満足 していることが確認できる。

2.3 雲検出の例

FTS-2では、雲を回避して観測を行うことで有効観測

図2.FTS-2センサユニットのモジュール構成

|--|

バンド	波数	入射分光輝度(W/cm²/cm ⁻¹ /str)					
	(cm ⁻¹)	ケース1	ケース2	ケース3			
1	13,050	5.5×10^{-7}	1.8×10^{-6}	1.8×10^{-7}			
2	6,200	5.2×10^{-7}	1.7×10^{-6}	1.7×10^{-7}			
3	5,000	3.8×10^{-7}	1.3×10^{-6}	1.3×10^{-7}			
	4,250	3.0×10^{-7}	1.0×10^{-6}	1.0×10^{-7}			
4	1,300	$\substack{3.29\times10^{-6}\\(280\mathrm{K})}$	_	_			
5	700	$^{1.15\times10^{-5}}_{(280\mathrm{K})}$	_	_			

図5. 雲検出処理の例

3. CAI-2センサ

3.1 CAI-2センサの主要諸元

CAI-2センサの主要諸元を表5に示す。

GOSAT/CAIでは直下視だけであったが、GOSAT-2 ではサングリントの影響を避けるために前方視/後方視と している。さらに、観測方向の増加と合わせて観測バンド 数を増加させている。このタイプの観測センサとしては世 界初^(注1)の340nmUV帯観測バンドを持っている。

(注1) 2015年10月30日現在,当社調べ

3.2 CAI-2センサの構成

CAI-2は、光学系ユニット(OPT)と電気回路ユニット(ELU)の2つのユニットから構成される。ブロック図を図6に示す。

CAI-2は,前方視5バンド/後方視5バンドの合計10 バンドから構成される。光学系構成として,1本のレンズ 系(鏡筒)に観測波長帯が同じ又は近い前方視/後方視バン ドを各1バンドずつ配置した。この合計5本の鏡筒構成に よって,鏡筒の本数を最小化して光学系ユニットの小型化 を図りつつ,要求の観測バンドと観測方向を満足させてい る。各鏡筒と各バンドの観測方向を図7に示す。

図4. S/N比の見積り(ケース1) データの増加を図って 表4. 装置 いる(この機能をイン 7リジェントポイン 2 ティングと呼ぶ)。視 3 野確認カメラで得ら 4

れた画像から雲のな

1,000

800

600

400

200

 \cap

S/NH

ケース1

衣4. 装直 関数の キ 個 全 幅								
バンド	要求仕様	設計結果						
1	0.40cm ⁻¹	$0.365 cm^{-1}$						
2		$0.265 cm^{-1}$						
3	0.27 cm ⁻¹	$0.257 cm^{-1}$						
4	0.27 CIII	0.244cm^{-1}						
5		0.243cm ⁻¹						

い領域を検出するアルゴリズムの検討を行った。

スペック

1 2 3 3 4 5 (13,050) (6,200) (5,000) (4,250) (1,300) (700) バンド(波数)

図5に、雲がある視野画像サンプルに対して雲検出アル ゴリズムを適用した例を示す。図5(a)は雲検出の信号処理 アルゴリズムを示す。このアルゴリズムでは、視野画像の カラーの輝度値に対してフィルタしきい値処理を行い、雲 の有無に応じた雲マスク画像を作成する。そして、雲マス ク画像に対してセンサ視野を重畳して最も雲がない領域を 観測点として抽出する。

図5(b)に、衛星画像に対してこれらのアルゴリズムを適 用した例を示す。四角枠内が視野確認モニタカメラの撮影 領域を示し、濃淡3段階で雲の有無を示している。①中間 色四角が視野中心で雲のない領域、②一番濃い四角が視野 中心以外に雲がない領域、③一番色の薄い四角は視野全体 が雲に覆われている領域を示し、図中に各色の代表例を示 す。①の領域は従来の観測データであり、②の領域がイン テリジェントポインティングで観測データが増加する領域 となる。この例では、①の領域は20%、②の領域は26%、 ③の領域は54%であり、したがって、インテリジェントポ インティングで観測データは20%から46%へ2.3倍向上す るという結果が得られた。

		光学系部1	光学系部 2	光学系部 3	光学系部4	光学系部 5			
	分光方式			4					
	IFOV(チルト角±20°において)	700	±15µ rad(0.4	1400±30µ rad(0.92±0.02kmに相当)					
	観測幅		日照時観	測期間6日間	点を2方向から観測				
	データ取得周期(撮像周期)		73.2m	ns以下		146.5ms以下			
	S/N比	規定分光放射輝度にて200以上							
共通	ダイナミックレンジ	最大輝度レベルで飽和しない							
	MTF(矩形波応答)		0.2以上						
	量子化ビット数		12ビット						
	ゲイン(積分時間) 切り替え段数		32						
	バンド間レジストレーション	0.5画素以内(ナレッジ)							
	取得較正データ	ダミー(暗時)画素出力,検出器温度,電気較正							
	バンド	1	2	3	4	5			
	バンド視線方向(チルト角)(°)		20						
	中心波長(µm)	0.343 ± 0.005	0.443 ± 0.005	0.674 ± 0.005	0.869 ± 0.005	1.63 ± 0.0075			
前古相	波長幅(µm)	<0.02				< 0.09			
FN 73 1%	带域外特性	<0.323 >0.363	<0.423 >0.463	<0.654 >0.694	<0.849 >0.889	<1.540 >1.720			
	規定分光放射輝度(W/m²/sr/µm)	45	79	46	30	7			
	最大分光放射輝度(W/m²/sr/µm)	209	530	400	250	58			
	バンド	6	7	8	9	10			
	バンド視線方向(チルト角)(°)	-20							
	中心波長(µm)	0.380 ± 0.005	0.550 ± 0.005	0.674 ± 0.005	0.869 ± 0.005	1.63 ± 0.0075			
这士妇	波長幅(µm)	<0.02			< 0.09				
又八亿	带域外特性	<0.360 >0.400	<0.530 >0.570	<0.654 >0.694	<0.849 >0.889	<1.540 >1.720			
	規定分光放射輝度(W/m²/sr/µm)	48	65	46	30	7			
	最大分光放射輝度(W/m²/sr/µm)	300	500	400	250	58			

3.3 CAI-2センサの性能見積り

CAI-2の主要性能である、S/N比の見積り結果を表6に 示す。仕様値はS/N比が200以上であり、要求仕様を満足 している。

4. む す び

TANSO-FTS-2とTANSO-CAI-2の詳細設計が完了して おり, PFM(ProtoFlight Model)製造フェーズに移行してい る。前号機(いぶき)及びCrIs開発で培われたヘリテージ技術 を活用して,確実な性能達成と短期間での開発を実現する。

表 6. CAI-2性能(S/N比)見積り

バンド	1	2	3	4	5	6	7	8	9	10
S/N比	272	303	383	260	347	260	329	383	260	347

図7. 観測バンド/観測方向と鏡筒構成

参考文献

- Hamazaki, T., et al.: Sensor system for Greenhouse Gas Observing Satellite (GOSAT), Proc. Of SPIE, 5543, 275~282 (2004)
- (2) 中島正勝, ほか:いぶきの運用と搭載センサの軌道上
 性能, 電子情報通信学会技術研究報告, 110, No.92,
 121~122 (2010)