プロジェクタ用 638nm帯高出力赤色半導体レーザ

蔵本恭介* 西田武弘* 阿部真司*

High Power 638nm Red Laser Diode for Display Applications Kyosuke Kuramoto, Takehiro Nishida, Shinji Abe

要 旨

現在,プロジェクタ用の光源として広く用いられている 高圧水銀ランプを,より高効率・高色再現性・長寿命・低 環境負荷といったメリットを持つ半導体レーザ(Laser Diode:LD)へ置き換える動きが進んでいる。実際に,青 色半導体レーザ光源を用いたプロジェクタは,既に市場に 投入されつつあるものの,赤色半導体レーザは,1素子当 たりの光出力が不足しており,現状では,置き換えがほと んど進んでいない状況である。

赤色半導体レーザの高出力化を阻害する要因は,前端面 近傍での光吸収によってCOD破壊(Catastrophic Optical Damage:レーザ端面の溶融破壊)が発生し,高光出力時 の信頼性が確保できないこと,及び活性層温度の上昇に よって光出力が飽和することである。

三菱電機では、現行の赤色半導体レーザ製品をベースに、 発光点幅を拡大することで端面における光密度を低減し、 端面COD耐性を向上させた。また、活性層温度の上昇を 抑えるために、パッケージを ϕ 5.6mm TO (Transistor Outline)オープンパッケージから、金属缶 (CAN)封止型 の ϕ 9.0mm TO-CANに大型化するとともに、3発光点構 造を採用した。

その結果,世界最高出力^(注1)となるパルス駆動2.5W出力 までの良好な光出力特性と,2.5W動作での良好な信頼性 を持つ赤色半導体レーザを実現した。

(注1) 2014年6月17日現在,当社調べ

レーザプロジェクタの構成と638nm帯高出力赤色半導体レーザ

レーザプロジェクタの光源として,青,緑,及び赤色半導体レーザが用いられる。マイクロディスプレイデバイスが1つの構成の場合,レーザはデューティ比30%前後のパルスモードで駆動される。高輝度画像の実現及び低消費電力の要求に応えるためには、レーザ光源の高出力化・高効率化が必要となる。

1. まえがき

現在,プロジェクタ用の光源には,高圧水銀ランプが広 く用いられているが,ランプ寿命が3,000時間前後と比較 的短い,消費電力が大きい,水銀の環境負荷があるといっ た問題から,これをLED,蛍光体,LDといった固体光源 に置き換える動きが進んでいる。この中でも,LD光源は 他の光源に比べて,高効率で低消費電力であること,高輝 度であること,色再現性が良好であることから,有望な光 源である。このことから,青色LD光源と蛍光体を使用し たハイブリッドタイプのプロジェクタが,市場に投入され 始めている。

プロジェクタ光源用のLDは、大きな光出力を得ること が可能な横マルチモードLDが用いられる。赤色光源用の 横マルチモードLDは、既に数社で製品化されているが、 光出力が十分ではないために、プロジェクタ当たりの使用 個数が大きくなる傾向がある。そのため、安価なシステム を構成しにくく、現時点では普及が進んでいない。このこ とから、赤色LDの高出力化が強く望まれている。

これまで当社は、プロジェクタ等の光源用途に、高出力 赤色LD "ML501P73 (CW (Continuous Wave) 光出力0.75W, パルス光出力1.0W)"を開発・量産している。今回、この 製品をベースに、パルス光出力を2.5Wにまで増大させた 赤色LDを開発した。

本稿では,開発した高出力赤色LDの素子構造と素子設 計及び素子特性と信頼性評価結果について述べる。

2. 素子構造と素子設計

2.1 赤色LDの素子構造

図1にAlGaInP系赤色LDの素子構造を示す。比較的容 易に高出力化が可能なBS(Broad Stripe)LD構造を採用し た。n型導電性を持つGaAs基板上に有機金属気相成長法 (Metal Organic Chemical Vapor Deposition: MOCVD) によって, n-AlInPクラッド層から, p-GaAsコンタクト 層までを積層する。活性層にはGaInP(ガリウムインジウ ムリン)材料を用いた単一量子井戸構造を用いている。

赤色LDの光出力が高温時に低下する主な理由は,熱エ ネルギーを得た電子が,pクラッド層のバンド障壁を乗り

越えて(オーバーフロー),発光に寄与しなくなることであ る。これを防止するため、今回の開発品では、p-AlInPク ラッド層のキャリア濃度を最適化している。また、活性層 への光閉じ込め量を増大させることで、発振に必要なキャ リア密度を低減し、電子のオーバーフローを抑制している⁽¹⁾。 p-GaAsコンタクト層は、エッチングによって60μm幅 の3本のストライプ形状とし、その後に、絶縁膜を形成す る。このストライプ上部だけ開口させた上でp電極を形成 する。基板裏面にn電極を形成することで、垂直方向に電 流が流れる構造となっている。このような構造によって、 3本のストライプ部だけに電流が流れるため、3点からレ ーザ光が出射される。LD共振器長は1,500μmとした。

端面近傍での光吸収によって発生するCOD破壊の対策 として、LD端面には、当社独自の亜鉛熱拡散による量子 井戸構造の無秩序化によって端面窓構造を形成している⁽²⁾。

前端面には低反射コーティングを、後端面には高反射コ ーティングを施している。活性層からの発熱を効率良く放 熱させるため、LD素子をJ/D(Junction Down)でサブマウ ントにダイボンドし、 ϕ 9.0mmのTO-CANパッケージに 搭載した。

このLDの各発光点の幅は60µmと広いため、横モードは マルチモードで発振する。

2.2 端面光密度の低減

赤色LDにおける主な高出力化阻害要因は,前端面での COD破壊である。これは,端面近傍での光吸収によって 端面が融解し,素子が故障する現象である。この故障モー ドでの平均故障時間(Mean Time to Failure: MTTF)は, 式(1)のように,前端面の光密度に大きく依存することが分 かっている⁽³⁾。

 $MTTF(COD) \propto P_{dens}^{-32} \cdots (1)$ $P_{dens} = \left(\frac{P_f}{W_e \cdot d}\right) \cdots (2)$ $P_{dens} : 光密度$ $P_f : 前端面光強度$ $W_e : 発光点幅$ d : スポット径(垂直)

高光出力化した場合でも、高い信頼性を確保するために は、発光点幅Weを大きくすることで端面の光密度を低減 し、CODの発生を抑制することが必要である。

今回,我々はデューティ比30%,パルス周波数120Hz, パルスピーク出力2.5Wのパルス動作におけるMTTFの目 標値を25,000時間とした。これを実現するために必要な光 密度の見積もり結果から,発光点幅を従来の40µmから 180µmへ大幅に増大することとした。この発光点幅への変 更は,1発光点のままその幅を広くする以外に,複数の発 光点に分割する方法もある。今回の開発品では,60µm幅 の発光点を3つ持つ素子構造を採用することにした。この 構造を選んだ理由については2.4節に述べる。

2.3 パッケージの大型化による熱抵抗の低減

赤色LDの光出力を制限するもう1つの要因に,光出力 の熱飽和がある。これは,高電流・高出力動作時に,活性 層又はその近傍領域における発熱によって,活性層の温度 が上昇することが原因となる。活性層温度を低減するため には,活性層とLDを保持するホルダ間の熱抵抗を低減す る必要がある。

今回,これを実現するために,現行製品のパッケージで ある5.6mm径のTOオープンパッケージを,より大型とな る9.0mm径のTO-CANに変更した⁽⁴⁾。図2に,その外形 を示す。

現行製品のパッケージである φ 5.6mm TOの, パッケージ部分の熱抵抗は, 熱シミュレーションによって2.13K/W と見積もられる。また, このパッケージを, 熱伝導グリスを介してLDホルダにセットしたと仮定したときの, パッケージとLDホルダ間の接触熱抵抗は4.07K/Wと見積もられる。一方, φ 9.0mm TO-CANの場合の, パッケージ熱抵抗は1.43K/W, 接触熱抵抗は1.37K/Wである。

このように、パッケージを大型化したことで、パッケージ熱抵抗と接触熱抵抗を合わせた熱抵抗値は6.20K/Wから 2.80K/Wに低減し、活性層温度の低下に大きく寄与することになる。

2.4 素子構造変更による熱抵抗の低減

2.2節で述べたように,この開発品では,信頼性向上を 目的に,発光点幅を現行の40µmから180µmに増大するこ とにした。

図3に、開発したLDとサブマウントの模式図を示す。 図中の矢印は、活性層近傍における発熱がパッケージ方向 へ放熱するときの熱の流れを示している。発光領域を広く すると、この熱流の幅が広がることによって熱抵抗が小さ くなる。LDを *φ*9.0mm TO-CANパッケージに搭載した

図 2. *φ*9.0mm TO-CANパッケージ

図3.60µm幅3発光点構造での熱の流れ

プロジェクタ用638nm帯高出力赤色半導体レーザ・蔵本・西田・阿部

場合の,活性層からLDホルダ間の全熱抵抗値は,現行製品で9.83K/Wであるが,3発光点構造によって3.90K/Wに低減する⁽⁴⁾。

ここで,発光点左端から右端までの距離が大きいほど, 熱抵抗値が小さくなると考えられるが,今回は,光学系と の結合を考慮して,この距離を270µmとした。

3. 素子特性と信頼性評価結果

現行製品及び開発した赤色LDの光出力-電流特性の例 を、それぞれ図4(a),(b)に示す。駆動条件は、デューティ 比30%、パルス周波数120Hzのパルス駆動で、図中記載の 温度は、パッケージ底面における温度(ケース温度)である。

現行製品では、1.0W光出力までは良好なリニアリティ を示しているものの、高出力及び高温領域では光出力の飽 和が見られる。一方で、開発品では、25℃から55℃の温度 範囲で、2.5W以上の光出力まで良好な特性が得られている。

開発品の25℃及び45℃における2.5W出力時の動作電流 は、それぞれ2.71A、3.41A、動作電圧はそれぞれ2.26V、 2.33Vであった。25℃におけるスロープ効率は、1.20W/A となっている。

図5は、開発品を25℃,2.5Wでパルス駆動したときの 水平(FFP//)及び垂直方向(FFP⊥)の遠視野像である。光

図6.開発品の波長スペクトル

出力がピーク値の1/e²となるときの全幅は, それぞれ7.3°, 73.6°である。これらの形状は, 現行製品とほぼ同等と なっている。この放射角とレーザ光の出射サイズから見積 もったエタンデュ(Etendu)は, 0.0004mm²・Srである。

図6は、開発品を25℃,2.5Wでパルス駆動したときの 波長スペクトルである。ピーク波長は638.6nm,スペクト ルの半値全幅は約1.6nmとなっている。

この開発品では、従来製品に対し発光点数が3倍になっ ている。ここで、照射画像上の斑点模様の程度を示すス ペックルコントラストは、発光点数の平方根に反比例する ことを考えると、この開発品のスペックルコントラストは 従来品の6割程度になっていると考えられる。

図7に、この開発品をCW動作で定電流駆動したときの 寿命試験結果を示す。光出力は3.4Wで、活性層温度が

25℃のパルス動作時と同じになるようにケース温度を設定 した。4,000時間を経過しても故障の発生はなく,安定動 作している。このLDを2.5W,デューティ比30%で動作さ せる場合を考えると,この試験の光出力加速係数は式(1)か ら(3.4W/2.5W)3.2=2.68となる。この加速係数と,パルス 駆動における実動作時間が30%であることを考慮すると, 図7の試験は4,000(時間)×2.68/0.3=35,700時間無故障に 相当することになり,このLDが高い信頼性を持っている ことが分かる。この2.5Wパルス動作は,TO-CANパッケー ジタイプの638nm帯赤色LDで,世界最高出力の動作である。

4. む す び

プロジェクタ光源用赤色LDの普及のためのキーポイン トである高光出力化の要求に応えるため、2.5W動作が可 能な高出力赤色LDを開発した。発光点幅増大によるCOD 耐性の向上に加え、 ϕ 9.0mm TO-CANパッケージと3発 光点構造の採用による熱抵抗低減によって、現行製品より も大きな光出力を実現した。さらに、25℃、2.5Wのパル ス動作で、35,000時間以上相当の安定動作を確認した。

現在,当社では,プロジェクタの高輝度化の要求に応え るため,更なる高出力化を進めている。また,CW動作品 の開発も進める予定である。

参考文献

- (1) Kuramoto, K., et al. : High Power AlGaInP Red Laser Diode, The 1st Laser Display Conference, LDCp7-1 (2012)
- (2) Tada, H., et al.: Uniform fabrication of highly reliable, 50-60mW-class, 685nm, window-mirror lasers for optical data storage, Jpn. J. Appl. Phys., 36, No.5A, 2666~2670 (1997)
- (3) Mitsuyama, H, et al.: Reliability Study on High-Power 638nm Broad Stripe Laser Diode, Opt. Rev.,
 21, No. 1, 43~47 (2014)
- (4) Kuramoto, K., et al. : High Power AlGaInP Red Laser Diode for Display Applications, The 21st International Display Workshop, PRJ1-2 (2014)