長焦点深度イメージセンサ"DeFIS"

國枝達也* 河野裕之** 山縣浩作*

美濃部 正*

Deep Field Image Sensor

Tatsuya Kunieda, Kosaku Yamagata, Tadashi Minobe, Hiroyuki Kawano

要 旨

三菱電機では,複写機のADF(Auto Document Feeder) などに使用される裏面読取りデバイスとして,密着イメー ジセンサ(CIS)を開発・製造している。CISは小型で高画 質な画像が得られるという特長を持ち,多くの複写機に搭 載されている。しかしながら,CISの撮像系は焦点深度が 浅いため,高画質な画像を得るには原稿にほぼ密着してス キャンする必要があり,複写機の原稿台側(表面読取り)の スキャンには適用できなかった。

長焦点深度イメージセンサ"DeFIS"は、焦点深度が浅い という従来のCISの弱点を解消することで、複写機表面読 取り用途への展開をねらった新しい読取りデバイスである。 撮像系に独自に開発した反射式のテレセントリック光学 系^(注1)を複数個組み合わせて用いることで,従来の複写機 の表面読取りデバイス(縮小光学系読取りデバイス)に匹敵 する焦点深度を確保し,CISに迫る小型・軽量化を実現し ている。

本稿では、DeFISの構成と各部の特長、及び特長を裏付 ける要素技術について述べる。

(注1) 主光線が原稿面に垂直入射する光学系で、原稿の距離が変 化しても倍率が変わらない。

長焦点深度イメージセンサ"DeFIS"の外観と凹凸のある原稿の取得画像例

長焦点深度イメージセンサ (DeFIS) によって、凹凸のある原稿も鮮明に読み取ることが可能となる。従来の複写機の表面読取りデバイス (縮小光学系読取りデバイス) に匹敵する焦点深度を確保し、CISに迫る小型・軽量化が可能となった。

特

1. まえがき

長焦点深度イメージセンサは,従来の密着イメージセン サの弱点を解消することで,これまで適用が困難であった 複写機表面読取り用途への展開をねらった新しい読取りデ バイスである。

本稿では、DeFISの構成と各部の特長、及び特長を裏付 ける要素技術について述べる。

2. デバイス

2.1 構 成

DeFISの基本的な構成(図1)はCISと同様,①原稿を照 明する照明系,②原稿の画像情報を光学的に結像させる撮 像系,③結像された画像情報を電気信号に変換するセンサ IC,④センサICのアナログ出力をデジタル変換するAFE (Analog Front End),⑤デジタル変換した画像情報に信 号処理を加えて客先システムへ出力する信号処理系から成 る。これらのうちCISと大きく異なるのは②と⑤である。

2.2 主要諸元

DeFISの主な仕様を表1に示す。

2.3 特 長

装置(複写機)の使用面から見た場合のDeFISの特長を次 に示す。

(1) 焦点深度が深い

新開発の撮像系によって4mmの焦点深度を実現し,更 に原稿距離が離れても画像は急激には劣化せず,自然なぼ やけ感を確保している(**表**2)。なお,焦点深度は撮像系の 明るさとのトレードオフの関係にあり,実用上必要な焦点 深度を2mmとすれば,より明るい撮像系を構成すること ができ,照明系の消費電力を引き下げることが可能となる。 (2) 原稿距離を長く取ることができる

図2はDeFISの断面構造である。新開発の撮像系によって、デバイスと原稿の距離を大きく取ることが可能となっている。

(3) 画像歪(ひず)みが少ない

撮像系にテレセントリック光学系を使用しており, 原稿 距離が変化しても読み取る画像の大きさが変化しない(**表3**)。

長焦点深度イメージセンサ"DeFIS"・國枝・山縣・美濃部・河野

項目	仕様	備考
撮像素子	CMOSラインセンサ	
画素密度	600dpi	
有効読取幅	310.2mm	
総画素数	8,192画素	
有効画素	7,328画素	画像結合処理後
ライン周期	90µs/line	
焦点深度範囲	ガラス面上0~2mm	
照明深度範囲	ガラス面上0~2mm	
物体間距離	6.9mm	原稿ガラス厚3.9mm時
データ出力方式	10ビット長デジタル出力	
データ通信	SPI準拠	
電源仕様	主電源:+5V×1.5A 光源用:+24V×0.7A	
外形	$330 \times 40 \times 33 (\text{mm})$	本体サイズ
啠昰	350 g	

表1. DeFISの主な仕様

CMOS : Complementary Metal Oxide Semiconductor

SPI: Serial Peripheral Interface

表2. 解像度の比較

図2. DeFISの断面構造

図1. DeFISの基本構成

特 集

Π

特集論文

(4) 画素欠落がない

従来のCISでは複数のセンサICチップを1ラインに並べ る構成としており、センサチップ間の継ぎ目部分に隙間が 必要なことからセンサチップごとに1画素の欠落が発生し ていた(図3)。DeFISでは隣接するセンサICを千鳥状に配 列し相互にオーバーラップして読み取る構成とすることで 画素欠落のない画像を得ることが可能となっている。

(5) 小型・軽量

従来の複写機表面読取りと同等の性能を確保しながら, CISに迫るサイズダウンを実現しており,系全体の小型化 が可能となっている(図4)。

表3. 画像歪みの比較

図3. 画素欠落が発生する理由

3. 要素技術

3.1 撮像系(1)(2)

(1) 複眼セル構造

従来の複写機で用いられている縮小光学系方式の撮像系 は、一つの大きい光学系(単眼)で構成されているため、長 い物体距離が必要で、系が大きくなる問題があった。

DeFISでは読取り領域を分割し、それぞれの読取り領域 に複数の小さな単位撮像系(光学セル)を対応させ、これら を組み合わせた構成(複眼)とすることによって、撮像系の物 体距離を大幅に短縮し、装置の小型化を実現している(図5)。 (2) テレセントリック光学系

屈折率分布型のレンズアレーを使用した従来のCISでは、 原稿距離によって転写倍率が変化するため、レンズアレー を構成するレンズの焦点深度以外に、隣接するレンズの画 像との重なりがずれることによるボケの発生の問題があっ た。DeFISの撮像系では主光線が原稿面に垂直となるよう なテレセントリック光学系を採用することによって、隣接 する光学セル間の画像の重なりのズレが発生しないため、 焦点深度は光学セル固有の焦点深度にだけ依存することと なり、深い焦点深度の確保を可能としている。

図5. 複眼セル構造

図4. 原稿台下の配置比較

図6. テレセントリック光学系による焦点深度確保

また,このような光学セルを一列に配置するだけでは, 隣接する光学セル間で隙間が発生するが,光学セルを千鳥 状に配列することによって,隣接する光学セルの画像をオ ーバーラップさせて読み込むことを可能としている(図6)。

(3) 反射光学系

先に述べたテレセントリック光学系を反射光学系で構成 し,光路を折り畳むことで,よりコンパクトな撮像系を実 現している(図7)。

3.2 信号処理系

(1) ハードウェア構成

図8に信号処理系のハードウェアブロック図を示す。前 段に従来のCISでも用いられる一般的な信号処理ブロック があり、後段にDeFIS固有の画像結合処理ブロックがある。 画像結合処理の後段に画像復元処理ブロックを設け、更に 解像度を改善することも可能となっている。

(2) 結合処理

DeFISでは複数の光学セルによって画像を読み取るため、 個々の光学セルから出力された画像を結合する処理が必要 となる。光学セルを千鳥状に配列していることに起因する 隣接セル間の副走査方向読取り位置の差に加え、組立て精 度のばらつきによるズレも考慮し、結合位置を動的に検出 して結合を最適化するアルゴリズムを用いている。隣接す る光学セル間でオーバーラップする領域の相関演算によって

結合位置を算出し、サブピクセルレベルの補間を行って結合 を実現している。光学セル間の画像がオーバーラップしてい ることによって画像情報の欠落は発生しない(図9)。

ADC : Analog to Digital Converter

図8. 信号処理系のハードウェアブロック図

4. む す び

当社が独自に開発した長焦点深度イメージセンサDeFIS の特長,及び要素技術について述べた。このデバイスは従 来の複写機表面読取り系に匹敵する性能を持ちながら, CISに迫る小型化を実現したもので,搭載する複写機の小 型化,機構の簡略化が可能となる。今後,この製品によっ て,複写機の市場が活発化することを願うとともに,新た な技術シーズとして他分野の読取り装置への展開も検討し ていく。

参考文献

- Kawano, H., et al.: Compact image scanner with large depth of field by compound eye system, Optics Express 20, No. 12, 13532~13538 (2012)
- (2) Kawano, H., et al.: Compact and Large Depth of Field Image Scanner for Auto Document Feeder with Compound Eye System, Optical Review 20, No. 12, 254~258 (2013)