太陽電池セル・モジュールの	野々垣光裕*	藪垣良美**
量産品質を支える製造技術	草壁嘉彦** 遊太晋輔**	告野 元**

Manufacturing Technologies for Stable Mass Production Quality of Crystalline Silicon Photovoltaic Cells and Modules Mitsuhiro Nonogaki, Yoshihiko Kusakabe, Shinsuke Takimoto, Yoshimi Yabugaki, Hajime Tsugeno

要 旨

地球温暖化に対する問題意識が高まる中,太陽光発電の 生産規模は,FIT (Feed-in Tariff)制度導入後の1990年代 後半から,ドイツを始めとする欧州の需要増によって順調 に拡大してきた。しかしながら,2008年のリーマンショッ クや電力の買取制度変更に伴い,欧州市場での需要が冷え 込み,世界的に太陽電池モジュールの生産量が過剰の状態 となり,価格下落が急速に進んでいる。一方で,国内では 2012年7月から電力の固定価格買取制度がスタートし,直 近の太陽光発電の市場は急速に拡大している。激しく需給 が浮き沈みしつつ市場が変動する中,今後も更なる高出力 化と長期信頼性の向上が求められると同時に,価格下落は 続くものと推定される。このような市場に対し,三菱電機 では,環境に配慮した鉛フリーはんだを用い,冗長性の高 い4本のバスバー電極で構成する高信頼性のモジュールを 開発し,市場に投入している⁽¹⁾⁽²⁾。

本稿では,鉛フリーを踏襲しつつ,高出力で品質の高い モジュールを生産性良く得るための製造技術として,セル についてはテクスチャ形成技術,モジュールについては鉛 フリー低融点はんだ接合技術などのセル間を接続するため のはんだ接合技術の最近の開発状況について述べる。

4本バスバー電極の単結晶セルを用いた鉛フリーの高出力太陽電池モジュール

環境に配慮した高効率で高品質のセル・モジュールの製造技術の採用によって、モジュールの出力保証20年の安定した高出力を約束する住 宅用単結晶10×5タイプで最大出力220Wの太陽電池モジュール。

1. まえがき

地球温暖化に対する問題意識が高まる中,太陽光発電の 市場は,需給の大きな変動を伴いつつ拡大している。今後 も,出力向上と,長期信頼性の向上が最重要課題であるこ とは変わりはないが,普及とともに,価格下落も更に続く ものと推定される。このような状況下,高出力で信頼性の 高いモジュールを生産性良く製造する技術が重要となる。 当社では単結晶シリコンウェーハを購入し,太陽電池セルか らモジュールまで一貫して製造している。

本稿では、セル、モジュールとも重要な製造工程が多々あ る中、セルについてはテクスチャ形成技術、モジュールにつ いてはセル間を接続するためのはんだ接合技術の最近の開発 状況について述べる。

2. テクスチャ形成安定化技術

太陽電池セルの断面構造を図1に示す。セル表面には, 反射を抑制し,入射光をできるだけ取り込むためにテクス チャ(ピラミッド構造)を形成する。当社の単結晶太陽電池 セルの製造工程を図2に示す。購入したp型シリコンウェ ーハに対し,最初にテクスチャ形成を行った後,セル構造 を形成する。そのため,下地となるテクスチャ形状の良し 悪しが,テクスチャ形成以降の後工程のでき映え(pn接合, 反射防止膜,電極)に大きな影響を及ぼす。このことから, 太陽電池製造上,テクスチャ形成技術は重要である。

入射光を取り込むという本来の機能に加え,下地として 重要な役割を果たすテクスチャは,シリコンの面方位によ るエッチング速度の違いを制御するための添加剤を含むア

ルカリ系薬液で形成している⁽³⁾。

正常なテクスチャ形状を図3(a)に示す。10µm前後のピ ラミッド構造が一面密に形成されている。これに対し、当社 では量産導入検討の際、図3(b)に示すようにテクスチャ未形 成領域が生じ、それに伴い反射率が悪化するセルが発生した。

ここでは、テクスチャ形状の合否の判定基準となる反射 率を1として、その比を示している。このテクスチャ形成 の阻害要因を究明すると同時にその対策を講じておくこと が重要となる。

テクスチャの阻害要因として,汚染分析を行うとともに, 検出された不純物による影響を調査した。その結果,特定 の数種の金属が阻害要因となることを見出した。したがっ て,図4に示すように,阻害物質(特定の数種の金属(Mⁿ⁺) とシリコンの溶出成分(SiO₃²⁻)との化合物)の働きを抑制 するエッチング制御物質を添加剤として含んだアルカリ系 薬液を用いることが必要と考えた。

次に,阻害物質に対して,低反射率を安定して実現でき るかどうかの観点で薬液の確認を行った。アルカリ薬液1

(a) 正常な形状(反射率0.88) (b) 異常な形状(反射率1.23)

図3. テクスチャ形状とその反射率(arb.unit)

図4. 阻害要因となる特定金属(Mⁿ⁺)による不良発生モデルと 添加剤による不良抑制モデル

図5.特定金属の反射率に及ぼす影響

とアルカリ薬液2の2種類のアルカリ薬液に対して阻害物 質の影響を調べるため、高濃度の特定金属を混入させてテ クスチャのでき映え(反射率)を評価した結果を図5に示す。 アルカリ薬液1を用いると、特定金属を混入させた場合で も反射率は基準値を満たしており、テクスチャ形成への影 響が小さいことが分かった。このことから、アルカリ薬液 1を量産導入し、金属汚染改善のための過剰な設備投資を することなく、低反射率の正常なテスクチャを安定して実 現することができる。

3. 高信頼はんだ接合技術

モジュール製造で,発電したセルの電力を長期間にわ たって効率よく取り出すためには,図6に示すストリング ス(直列に接続したセルの集合体)を形成するためのバスバ ー電極とタブ線と称する配線材(はんだで被覆した平角銅 線)とのはんだ接合部,及び図7に示すストリングス同士 を接続するために使用する横タブ線とストリングス端のタブ 線とのはんだ接合部の長期信頼性確保が重要である。そのた め,長期信頼性に優れた高品質のはんだ接合技術を開発した。

3.1 鉛フリー低融点はんだ接合技術

当社のモジュールでは、タブ線の表面のはんだ材には、 環境を考慮し、Sn-Ag-Cu系の鉛フリーはんだを採用し ている。鉛フリーはんだは融点が高く熱応力が大きくなる 傾向にあるため、製造工程内でのセルの破損やマイクロク ラックによる特性不良の増加が懸念されるが、種々の工夫 で一般的なSn-Pb系共晶はんだと同等以上の品質を確保 している⁽⁴⁾。

一方,モジュールの低コスト化を図るためには,薄肉化 されたウェーハを購入する傾向にあるため,製造されるセ ルは薄くなる。そのため,タブ線とのはんだ接合後にそり

図6. バスバー電極とタブ線間のはんだ接合によるストリングス形成

図7.タブ線と横タブ線間のはんだ接合箇所

が大きくなって,セルが破損しやすくなるという問題があ る。そりを低減するには低温ではんだ接合することが有効 であるが,Sn-Bi系の低融点はんだは脆(もろ)い性質があ るため,温度サイクル試験でクラックが発生して接合信頼 性が低下する懸念がある。そこで,クラックの発生を抑制 するために,はんだ接合部の側面をエポキシ樹脂で覆う接 合構造を開発した⁽⁵⁾。はんだ接合部の側面をエポキシ樹脂 で覆うことによって,エポキシ樹脂に応力を分散させること でひずみを低減でき,接合信頼性を向上させることができ る。

図8に接合部の応力シミュレーションに用いた二次元解 析モデルとエポキシ樹脂の物性値,及び応力解析図を示す。 エポキシ樹脂ありの場合は,はんだ接合部に発生するひず みは,エポキシ樹脂なしに比べ,最大相当ひずみが1/3以 下(0.035→0.011)に低減することが分かる。

また,実際にはんだ接合部の側面をエポキシ樹脂で覆う 構造を実現するために,エポキシ樹脂として,硬化前の成 分が,はんだの濡(ぬ)れ性に良好なフラックス作用を持つ 材料を用いた。このエポキシ樹脂をディスペンサでバスバ ー電極上に塗布後,タブ線を搭載して加熱することによっ て,タブ線とバスバー電極間がはんだ接合されて,エポキ シ樹脂は,はんだの側面に排出される。次に,側面に排出 されたエポキシ樹脂をはんだが再溶融する温度以下でアフ ターキュアする。接合完了後の断面構造を図9に示す。タ ブ線とのはんだ接合部の側面が硬化したエポキシ樹脂で覆 われていることが分かる。

次に,この低融点鉛フリーはんだを被覆したタブ線を用い,このエポキシ樹脂をバスバー電極に塗布してはんだ接

図8. 接合部の応力シミュレーション

バスバー電極 はんだ

図9.エポキシ樹脂で補強したはんだ接合部の断面

合したセルと、エポキシ樹脂のない場合として、通常のフ ラックスを塗布してはんだ接合したセルを用いて、セル1枚 構成のモジュールを各3枚ずつ作製し、温度サイクル試験 (-40℃⇔90℃)を行った。図10に、試験サイクル数に対する 出力の低下率の推移を示す。通常のフラックスを用いたモ ジュールはサイクル数が増えると、出力低下率が増加傾向に あるのに対し、フラックス作用を持つエポキシ樹脂を用いた モジュールでは出力低下率は増加していないという結果が得 られた。

これらのことから,はんだ接合部の側面をエポキシ樹脂 で覆う構造によって,接合部の信頼性を向上できることを 確認し,将来のウェーハ薄肉化に対応することができる。

3.2 高品質タブ線間はんだ接合技術

ストリングス間の接続は、横タブ線とストリングス端の タブ線を表面に被覆されたはんだで接合する。確実にはん だ接合するためには、接合箇所にフラックスを供給する必 要があるが、タブ線自体の蛇行やストリングス自体の搬送 時の回転等によって、フラックス供給が必要となるはんだ 接合位置にはばらつきが発生する。このため当社では、ス トリングス端のタブ線を横タブ線上のはんだ接合位置に搭 載する直前に、タブ線にフラックスを塗布する方式を採用 し、搭載位置のばらつきが発生しても確実にはんだ接合で きる工法を実現している。

当社の塗布方式の概念図を図11に示す。フラックス液 面以下で待機させていた塗布棒先端部でフラックスをすく い上げる。次に,塗布棒が上昇するのにあわせて押さえが 下降し,タブ線を挟み込むことによって,フラックスをタ

ブ線に塗布する。この時,図12に示すように,押さえの 幅は、タブ線先端部の位置ばらつきを考慮した尤度(ゆう ど)のある設計としている。また塗布棒の先端部の材質と形 状を工夫することで、適量のフラックスを掬い上げて塗布す ることを実現している。塗布棒と押さえはタブ線部を挟み込 んだ後、タブ線先端部方向にスライドさせている。この動作 によって、タブ線先端部まで確実にフラックスを塗布すると 同時に、タブ線先端に塗布した余分なフラックスを取り除き、 フラックスの過剰供給を抑制している。この後、フラックス を塗布したタブ線先端部を横タブ線上の所定位置に搬送し、 タブ線同士を固定した状態で接触部を加熱することによっ て表面に被覆したはんだが溶融し、接合される。

さらに,はんだ接合後のでき映え検査を全数実施するこ とで,市場へのはんだ付け不良流出を防止できる仕組みを 構築している。

4. む す び

高出力で品質の高いモジュールを生産性良く得るために 重要となる太陽電池セル・モジュールの製造技術について 述べた。今後,更に生産性向上を図りながら高出力化と長 期信頼性の向上を目指し,太陽光発電の更なる普及に貢献 していく。

参考文献

- 中村真之,ほか:太陽電池モジュールの高効率化及び 大出力化,三菱電機技報,84, No.6, 347~350 (2010)
- (2) 瀧本晋輔, ほか:高出力太陽光発電モジュールの量産
 化技術, 三菱電機技報, 84, No.12, 693~696 (2010)
- (3) Vazsonyi, E., et al.: Improved Anisotropic Etching Process for Industrial Texturing of Silicon Solar Cells, Solar Energy Materials & Solar Cells, 57, 179~188 (1999)
- (4) 森川浩昭, ほか:太陽電池セル・モジュール鉛フリー
 化, 三菱電機技報, 77, No.5, 309~312 (2003)
- (5) 藪垣良美,ほか:熱硬化性樹脂を用いた太陽光発電モジュールの低温はんだ接合,第19回エレクトロニクスにおけるマイクロ接合・実装技術シンポジウム論文集, 19,253~256(2013)