GaN HEMTの半物理的非線形回路モデル

大石敏之* 大塚浩志** 山中宏治*

Semi-physical Nonlinear Model for GaN HEMTs with Simple Equations Toshiyuki Oishi, Hiroshi Otsuka, Koji Yamanaka

要 旨

従来のガリウム砒素(ひそ)(GaAs)半導体より絶縁破壊 電界が大きく,電子飽和速度も大きい窒化ガリウム(GaN) を使ったトランジスタGaN HEMT(High Electron Mobility Transistor)によって高出力かつ高効率な高周波 増幅器が実現できる。この増幅器は携帯基地局,レーダ, 衛星通信などのシステムの高性能化に貢献でき,高度情報 通信社会を支えるキーデバイスと言える。しかし,GaN HEMTには残された課題も多く,今後,増幅器のさらな る高性能化に向けた研究開発が必要である。今回,我々は, 開発の効率化に向けたデバイス/回路設計ツールとして, 新しい非線形回路モデルを開発した。

このモデルは回路特性を計算する式を物理現象に基づい て定式化したため、デバイス特性から回路特性を計算でき るという特長を持つ。電流と容量のモデルで同じ物理量を 利用できるため、従来モデルよりパラメータ数を大幅に削 減できる。物理量はtanh(hyperbolic tangent)関数で表さ れているので,従来モデルと同じ高い収束性と短い計算時 間を維持している。tanh関数は回路シミュレーションで 良く利用されている関数であるので,このモデルを市販の 回路シミュレーションに容易に組み込めることもメリット である。

これらの特長を持つこのモデルの検証をGaN HEMTで 行った結果,電流と容量の電圧依存性は幅広い電圧範囲で 実測の特性を良く再現できることが分かった。さらに小信 号(Sパラメータ),大信号特性についても実測の特性と精 度良く一致した。これまでの回路モデルはデバイスとの関 連性が薄く,デバイス開発とは切り離されている。この回 路モデルを使えば,増幅器をデバイス,回路の両面から設 計でき,デバイスと回路を同時に開発することができるた め,早期に高性能なデバイスを実現することができる。

モデルのコンセプト・特長とGaN HEMTでの実証

デバイスの物理現象を回路モデルに取り込むためにTCAD (Technology Computer Aided Design) シミュレーションの結果をモデル化した。電子密度の分布から、AIGaN (窒化アルミニウムガリウム) とGaNの界面が電流源、ゲート近傍の電子濃度が少ない領域がゲート容量となる。これらの物理量を回路シミュレーションで広く使われている*tanh*関数で定式化し、計算時間と収束性を確保した。このモデルを回路シミュレーションに組み込み、GaN HEMTの実測と比較すると非常に良い精度で一致した。

1. まえがき

GaNは、GaAsに代表されるこれまでの化合物半導体と 比べて、絶縁破壊電界が大きく、電子飽和速度がほぼ同じ という優れた材料物性を持つ。この特長を生かすことで、 高電圧、高周波で動作できるトランジスタが実現できる⁽¹⁾。 このトランジスタを携帯基地局、レーダ、通信衛星などの 増幅器として使うことで、システムの高性能化(高出力化 によるレーダの探知距離拡大や衛星通信の大容量化、高効 率化による消費電力低減、小型化)に貢献できる。さらに GaNには有毒な砒素(As)が含まれておらず、地球にもや さしい材料である。このようにGaNを使うことで、これか らの情報通信社会に役立つトランジスタが実現できるため、 世界中で活発な研究開発が行われ、三菱電機でもマイクロ 波帯で高出力かつ、高効率な(100W、60%)増幅器を開発 している⁽²⁾。

現在, GaNを使ったトランジスタGaN HEMTは優れた 電気的特性が得られつつあるものの,結晶の高品質化,ト ラップの低減などの課題が残っており,今後もGaNのポテ ンシャルを最大限に引き出すデバイス開発が必要となる。 一方,増幅器の高性能化にはトランジスタ周辺の回路開発 やその最適化も必要である。これまで,デバイス開発と回 路開発は独立して行われており,特定のデバイスで開発さ れた回路は異なるデバイスに適用しても良い性能を得られ ないことが多い。このため,GaN HEMTのようにデバイ ス特性が改善されていく開発段階には,デバイスと回路の 両方を同時に開発できるツールがあれば,デバイスと回路 の開発を同時にできるため,効率的に高性能化が進められ る。

デバイス開発にはデバイス構造からDC (Direct Current) 特性を計算するツール (モデル),回路開発では等価回路図 から回路特性を計算するものがあるが,デバイスと回路に 共通のモデルは非常に少ない^{(3) (4) (5) (6) (7)}。今回, 我々はデバイスの物理現象から回路モデルを構築 することで,デバイス,回路開発の両方に使用で きるモデルを開発した⁽⁸⁾⁽⁹⁾。

2. モ デ ル

2.1 ドレイン電流モデル

トランジスタは小さな信号を大きな信号に変換 するデバイスで、入力された電圧に対して出力さ れる特性が非線形となる。このため、等価回路で 非線形性を持つドレイン電流と容量の定式化がモ デルの良しあしを決める重要なポイントとなる。 ここでは、まず、ドレイン電流に対するモデルに ついて述べる。モデルの構築にあたり、デバイス と回路の関連性を強めるため、デバイス内の物理 現象に基づき、モデルを定式化した。図1はGaN HEMT の断面模式図で、ドレイン電流は電子がソースからドレイ ンに移動する現象である。これは物理量であるGaN中の電 子密度nと電子が移動する速度veと関連付けられ、

式(1)の物理量をtanh関数で定式化できれば収束性や計 算時間のメリットを損なうことなく、物理量を回路シミュ レーションに組み込むことができる。 $n \approx v_e$ は実際に測定 することは難しいため、物理現象をシミュレーションでき るTCADソフトウェア(シルバコ社製ATLAS)を使い、物 理量の定式化を行った。定式化には物理現象を良く理解す ることが重要であるため、まず、GaN HEMT動作に必要 な物理現象をTCADに導入し、実際の電気的特性が再現 できることを確認した⁽¹⁰⁾。その上で、ゲート端子の電圧 V_{gs} やドレイン端子の電圧 V_{ds} と物理量の関係を計算し、 TCADで得られた特性をtanh関数で表現した。**図2**、**図3** に $n \geq v_e$ のtanh関数モデルとTCADシミュレーション結果 を示す。いずれの物理量もこのモデルで良く表現できるこ とが分かる。その結果、ドレイン電流モデルは

とした。*I*maxは最大ドレイン電流,*V*kneeはニー電圧,*V*pは ピンチオフ電圧,*g*mpkは最大相互コンダクタンスで,デバ イス設計に用いるパラメータである。従来のモデルではデ バイス設計に用いるパラメータを使えない。よって,この モデルはデバイスと回路のつながりが強いことが特長であ

図1. GaN HEMTの断面模式図

る。また、 $P_2 \ge P_3$ は定数である。なお、式(2)の最初のtanh関数n, 2つめのtanh関数 v_e に対応する。これは、nは V_{gs} にのみ依存し、 v_e は V_{ds} にのみ依存することを意味す る。

2.2 容量モデル

容量モデルについても物理量との関連性を深めるために、 物理式からモデルを定式化した。ゲート容量 C_{ss} はゲート 下に形成される容量である。この容量は図1に示すように ゲートの下に形成される空乏層とゲートからドレイン側に 伸びる空乏層で構成される。特にドレイン側に伸びる空乏 層は電圧増加とともに広がり、高電圧で動作させるGaN HEMTでは無視できない量である。ゲート下の容量はゲ ートの長さ L_s に蓄えられる電荷を V_{ss} で微分した量となる。 ドレイン側に伸びる空乏層で形成される容量は伸び(ゲー トエクステンション) ΔL_s 中に蓄えられる電荷の微分とな る。これらから C_{ss} は

となる。従来のモデルではドレイン電流と容量モデルは 別々に実測と合うように定式化するため、各モデルの関連 性は薄い。さらに個々のモデルに対して定式化するため、

GaN HEMTの半物理的非線形回路モデル・大石・大塚・山中

パラメータの数も増えてしまう。このモデルは物理現象と 関連付けているため、パラメータの共通化を行うことがで きる。今回、ドレイン電流と容量でnを共通として定式化 することで、パラメータ数を37から17と大幅に低減するこ とができた。デバイス設計で考慮するパラメータが減り、 効率良くデバイス開発にフィードバックできる。nについ てはドレイン電流で定式化しているので、ここでは、ゲー トエクステンション ΔL_sについて考える。**図4**にTCADの 結果とこのモデルの比較を示す。ゲート・ドレイン電圧 V_{sd}が150Vという高電圧まで精度良く記述することができ た。これらから容量C_{ss}モデルは

$$C_{gs} = C_{gs0}I_{\max}L_g\left(\frac{\frac{d\psi}{dV_{gs}}}{2\cosh^2\psi}\right)\left[1 + R_{Lg} \tanh\left(\alpha_{Lg}V_{gd}\right)\right] + C_{gspi}\cdots(6)$$

とした。ただし、 C_{gs0} はゲート・ソース容量、 R_{Lg} は L_g と $L_g + \Delta L_g$ の比、 α_{Lg} はゲートエクステンション係数、 C_{gspi} は ゲートとソースの間に発生する寄生容量である。

このモデルはGaN HEMT中の物理現象から定式化して おり、デバイス設計で用いられる量(V_{knee}, V_p, g_{mpk}など) で表されていることが特長である。これらの量はデバイス の膜厚などのデバイス寸法やバンドギャップなどの材料定 数から計算できるため、デバイス構造からこのモデルのパ ラメータを決定することも可能となる。これはこのモデル によってデバイス構造を回路シミュレーションに取り込む ことが可能であることを示す⁽⁸⁾。よって、このモデルはデ バイス設計でも非常に有力なツールとなると考えられる。

3. モデルの検証

3.1 検証方法

このモデルの有効性を確認するために実際のGaN HEMT⁽¹¹⁾⁽¹²⁾を使って検証した。今回,寄生成分や発熱の 効果を考慮した回路を用い,まず,電流-電圧と小信号特 性の測定結果を初期値として,モデルパラメータを抽出し た⁽⁹⁾。次にこのモデルを回路シミュレーションに組み込み, DC,小信号,大信号特性を計算し,実測と比較した。

図4. モデルとTCADの比較(ゲートエクステンション)

図6. 容量-電圧特性の実測との比較

3.2 実測との比較

図5,図6にDC(*I*_{ds} - *V*_{ds})と容量(*C*_{ss} - *V*_{ds})特性,図7 に小信号特性(Sパラメータ),図8に大信号特性でのモデ ルと実測の比較を示す。いずれの特性でも実測の特性を再 現しており,このモデルの有効性が実証された。

4. む す び

デバイス内で生じている物理現象を、回路シミュレーシ ョンで取り扱いやすいtanh関数で定式化した新しいモデ ルを提案し、実際のGaN HEMTを使ってその有用性を実 証した。この回路モデルはデバイスとの関連性を強く意識 しており、デバイス設計に用いられるパラメータを使って 回路特性を計算することができる。この特長を用いること で、回路性能を律速しているデバイスパラメータを明確化 し、GaN HEMTを使った増幅器の高性能化をデバイスと 回路から進めていくことが可能である。

参考文献

- Mishra, U.K., et al. : Proceedings of the IEEE, 96, Issue2, 287~305 (2008)
- (2) Yamasaki, T., et al.: 2010 IEEE MTT-S Int. Microwave Symp. Dig. TH3D (2010)

図7.Sパラメータの実測との比較

図8.大信号特性の実測との比較

- (3) Pedro, J.C.: 1994 IEEE MTT-S Int. Microwave Symp. Dig. WE3F-14 (1994)
- (4) Koudymov, A., et al.: IEEE Transactions on Electron Devices, 55, Issue3, 712~720 (2008)
- (5) Curtice, W.R., et al.: IEEE Transactions on Microwave Theory and Techniques, MTT-33, No.12, 1383~1394 (1985)
- (6) Angelov, I., et al.: IEEE Trans. Microwave Theory and Tech., MTT-44, No.10, 1664~1674 (1996)
- (7) Trew, R.J.: CSICS 2010, C01 (2010)
- (8) Oishi, T., et al. : INMMIC2010, 20~23 (2010)
- (9) Otsuka, H., et al.: International Journal of Microwave and Wireless Technologies, 3, No.1, 25 ~33 (2011)
- (10) 大石敏之, ほか:2009年電子情報通信学会ソサイエティ大会, C-10-4 (2009)
- (11) Suita, M., et al. : Phys. Stat. sol. (c), 3, No.6, 2364~2367 (2006)
- (12) Kamo, Y., et al.: 2005 IEEE MTT-S Int. Microwave Symp. Dig. WE1E-4 (2005)