粒子線(陽子線)治療装置用入射器

川﨑定博* 山本和男**

Proton Injector System Sadahiro Kawasaki, Kazuo Yamamoto

要 旨

粒子線治療は放射線治療の一つで,従来のX線やガンマ 線による治療に比べ患部に集中的に照射できるため,副作 用や身体機能の損失を最小限に抑えられるという利点があ る。国内では2001年7月に先進医療の認可を受け,現在, 公的医療機関6施設,多目的研究機関1施設,民間医療機 関1施設で治療や臨床研究が行われている。

この粒子線治療に用いる陽子や炭素イオンは、入射器と 呼ばれる線形加速器からシンクロトロンに入射され、数百 MeVという高いエネルギーに加速される。従来の入射器 は電界で加速しながらビームを絞るために十数個から数十 個の磁石が必要であり、構造が複雑となり調整が難しく、 信頼性と保守性に限界があった。このため、磁石を使用し ないAPF(Alternating Phase Focusing:交替位相収束) 方式の入射器の開発が求められていた。

三菱電機は今回, "のこぎり波型位相変調技術"を適用す ることによって, APF方式の陽子線治療装置用入射器を 世界で初めて開発した。さらに,磁気共鳴型電力分配(レ ゾナントカプラ)方式を適用し,陽子を加速する高周波電 力の供給電源を,従来の2台から1台に集約した。これに よって構成が簡素化され,複雑であった高周波電力の位相 調整も不要となって保守性の向上を実現した。

当社はこれまで,入射器を社外から調達していたが,今 回の開発によって自社製作が可能となり,粒子線治療装置 システム全体の設計・製作を自社で完結できるようになっ た。

粒子線治療装置用入射器の外観写真

粒子線治療装置用入射器はシンクロトロンが加速できるエネルギーまで陽子を初期加速する装置である。イオン源,前段線形加速器,後段線 形加速器で構成されており,2台の線形加速器は電力分配装置で接続されている。高周波電源の出力は後段線形加速器に接続されており,電力 分配装置によって後段線形加速器と前段線形加速器に給電される。

1. まえがき

がんは、日本で1981年から死因の第一位であり、年間30 万人以上が亡くなっている。継続的に医療を受けているが ん患者数は140万人以上で、1年間に新たにがんと診断さ れる患者数は50万人以上とされている⁽¹⁾。

現在行われている主ながんの治療法には,外科治療,放 射線治療及び化学治療があり,それぞれの治療法の特徴を 生かして併用するのが一般的になっている。放射線治療は, 放射線をがん病巣に照射することによって,手術を行わず にがんを治療する方法である。その一つである粒子線治療 は,身体への影響を最小限に抑えることができ,がん治療 が効果的に行えるため,治療患者数が年々増加する傾向に ある⁽²⁾。

粒子線治療装置は、入射器とシンクロトロン及び照射機 器に大別される。入射器はシンクロトロンが受け付けられ るエネルギーまで荷電粒子を予備加速するための装置であ る。一般的な入射器は、荷電粒子を生成するためのイオン 源と、効率よく加速するための2台(前段/後段)の線形加 速器、線形加速器へ加速電力を供給するための2台以上の 高周波電源で構成される⁽³⁾。

医療機器として特に求められる信頼性と保守性の更なる 向上のため,当社は次の2点を特徴とする陽子線用入射器 を開発した。

- (1) 後段線形加速器内でのビーム収束方法としてAPF法 を取り入れ,従来必要としていたビーム収束磁石を不要 とした。
- (2) 加速電力供給方法として磁気共鳴型電力分配(レゾナントカプラ)法を取り入れ、従来2台以上必要としていた高周波電源を1台に集約した。

本稿では,内製化入射器の構成と特徴について述べ,ビ ーム試験による機能実証結果について述べる。

2. 内製化入射器の特徴

2.1 全体構成

入射器全体システムを図1に示す。イオン源と2台(前 段/後段)の線形加速器及び1台の高周波電源と電力分配 装置から構成された,全長4mのシステムである。

2.2 イオン源

イオン源として大電流陽子を生成できるECR(Electron Cyclotron Resonance:電子サイクロトロン共鳴)イオン源 を開発した。電磁石によって磁界を発生させた真空容器内 に2.45GHzのマイクロ波を入力すると,真空容器内に浮遊 している電子にエネルギーが効率よく付与される。そこに 水素ガスを注入すると水素原子の電子が浮遊電子と衝突し て弾き出され,水素原子核(=陽子)を生成することができ る。

2.3 前段線形加速器

イオン源から引き出された数10mAの低エネルギービー ムは、陽子同士の電荷による発散力(空間電荷効果)が特に 大きい。そのため前段加速器としてビーム収束力が格段に 強いRFQ(Radio Frequency Quadrupole:高周波四重極) 型線形加速器を開発した。図2に示すようにビーム加速方 向へ伸びた加速電極を共振器内に90度おきに配列し、 200MHzの高周波電力を供給すると、電極間に電界が発生 する。発生した電界によってビームの加速と収束を行い、 ビームを取りこぼすことなく、かつ群集化して後段加速器 が加速できるエネルギーまで加速する。

2.4 後段線形加速器

後段線形加速器には、IH(Interdigital-H)型DTL(Drift Tube Linear accelerator:ドリフトチューブ線形加速器) を開発した。共振器内に中空円筒(ちくわ)状のドリフトチ ューブ電極をビーム加速方向に数十個配列し、電極間に発 生する電界でビームを加速する。電界を発生させるため、 共振器内ビーム加速方向(共振器長手方向)に磁界を励起さ せ、誘起される誘導電流が共振器内壁面に流れ電極間に間 接的に電界を発生させる。従来型のDTL(ビーム加速方向

図1.入射器全体システム構成

図 2. RFQ型線形加速器内部

図3. APF方式IH型DTL内部

に電界を励起させる)に比べ,共振器内に発生する電界を 効率よくビーム加速に使用することができるため,加速効 率(供給電力に対する加速エネルギー量)が格段に高いこと が特長である。

ビーム自己収束方法の一つとして知られるAPF方式は 1950年代に発明されたが、収束力が弱いために大電流物理 研究用としては発展しなかった。その後、加速器の用途先 が大電流物理研究用から医療用等に拡大され、空間電荷効 果が小さい数100eµA(eµAは価数×電流を表す)の炭素イ オン用入射器にAPF方式が適用された⁽⁴⁾。一方、陽子用入 射器では医療用であっても数10mAの大電流を加速する必 要があるためにAPF方式は採用されず、電極自身に四重 極磁石を内蔵し磁界の力を用いてビーム収束する方式が採 用されてきた。この方式は構造が複雑で調整が難しく、信 頼性と保守性の向上に限界があることから、磁石を使用し ないAPF方式を適用した大電流陽子加速用IH-DTLを世 界で初めて開発した。加速器内部の写真を図3に示す。

大電流陽子を加速するために開発した主な項目は,次の 3点である。

(1) ドリフトチューブ電極配列

APF方式として"のこぎり波型位相変調技術"を開発し, ドリフトチューブ電極配列を設計した。"のこぎり波型位 相変調技術"は効率的にビームを加速できる当社独自の位 相パターン技術である。従来型では電極間の位相パターン を正弦波的に変化させている⁽⁵⁾のに対して,この技術では 同じ位相を数回繰り返すことが特徴であり,図4のように パターンの形がのこぎり波に似ていることからこのように 呼んでいる。電極間の位相は,低エネルギー領域では収束 力を強くするため±60度近傍とし,高エネルギー領域にな るにつれて加速を重視するよう,±30度近傍まで変化させ ている。この技術によって後段加速器で加速される陽子の 到達エネルギーのばらつきを小さくすることができ,整っ たビーム群をシンクロトロンに効率よく入射することが可 能となった。

(2) ドリフトチューブ電極形状

空間電荷効果を考慮したビーム設計では,電極間に発生 する電界分布はビーム軸に対して対称と仮定するが,IH-DTLは電極1本ずつ交互に共振器に設置されるため非対 称電界分布を形成する。そのため,電界の非対称成分を低 減させるボトルシェイプ型加速電極形状を開発した。さら に,放電の原因となる最大表面電界強度を低減させるため に,卵形ドリフトチューブ電極形状を開発した。

(3) 共振器形状

IH-DTLは共振器端部でのドリフトチューブ電極間に発 生する電界強度は低いため、電極間に発生する電界を用い てビームを収束するAPF法では、特に空間電荷効果が顕 著である低エネルギー領域でビームを損失してしまい、大 電流陽子ビームを加速することができない。そのため、共 振器端部径を拡大した拡張空胴を設けた共振器形状を開発 し、共振器端部での電界強度の立ち上がりを早くし、低エ ネルギー領域でのビーム損失を低減することを可能とした。

2.5 高周波電源

2台の線形加速器に高周波電力を供給するために、周波 数200MHz,出力先頭値540kWの大電力高周波電源を開発 した。高周波電源は低電力発生器,半導体増幅器,中段増 幅器,終段増幅器から構成される。低電力発生器はパルス 変調された約1Wの高周波信号を生成する装置であり、そ の出力は次段の半導体増幅器によって約500Wに増幅され る。中段/終段増幅器は、真空管と空洞共振器を用いた増 幅器であり、大電力を得るために真空管を複数個並列駆動 する方式を採用している。これによって比較的安価で取り 扱いの容易な真空管を選択することが可能となっている。 空洞共振器の各部構造は増幅回路の回路素子として機能す るとともに、高周波の分配・結合器としての役割も果たし ている。各真空管は独立したバイアス回路で駆動しており、 真空管の状態によらず同じカソード電流が得られるように バイアス電圧が制御されている。

2.6 電力分配装置

荷電粒子を加速すると運動エネルギーが荷電粒子に与え られる,いわゆるビームローディングが生じるが,そのエ

表1. 陽子線入射器ビームの性能

加速粒子	陽子
到達エネルギー	7 MeV
加速電流量	10m A
加速電流変動量	±10%以下
運転周波数	200MHz
運転モード	パルス
最大パルス幅	40µs
最大繰り返し	20Hz

ネルギーも高周波電源から供給する必要があり,荷電粒子 を加速しないときより大きなパワーを必要とする。ビーム ローディングの位相と高周波電源の位相は異なるので,荷 電粒子を加速する際には加速しない場合と異なる電源位相 にする必要がある。従来技術では,空洞共振器ごとに電界 を励起するために高周波電源を設置し,個々の高周波電源 で電界の強度と,高周波電源間の位相を調整することによ って,各々の加速位相と電界強度とを調整しているため, 複雑な制御が必要であった。今回,前段加速器と後段加速 器を,外導体と内導体で構成された高周波同軸伝送路で相 互に結合し,その両端部に上記外導体と内導体を接続する ループを形成した磁気共鳴型電力分配装置を開発した。そ の結果,陽子を加速する高周波電力の供給電源を,従来の 2台から1台に集約することが可能となった。

3. ビーム実証試験

表1に陽子線入射器ビームの性能を示す。到達エネルギ ーを従来の3MeVから7MeVに増加させ、シンクロトロ ンへの入射効率を向上させた。パルス運転モードで、パル ス内波高値が加速電流量の10mAとなる。

社内にビーム特性評価システムを新たに構築し,入射器 ビーム性能を実証した。図5は入射器直後にあるCT (Computed Tomography)で測定した加速電流波形である。 最大加速電流量は11.5mAであったが,実際の運用は 10mAを想定している。また,図6は加速された陽子のエ ネルギースペクトラムである。運動量分散±0.3%以内に 全電流の70%以上捕獲されていることを確認した。

4. む す び

当社が開発した粒子線治療装置用入射器は,世界で初め て収束磁石を使用しないAPF方式を大電流陽子ビーム加 速に適用し,更に電力分配装置によって高周波電源を2台 から1台に集約したことが特徴である。今回の開発によっ

て,これまで外部から調達していた入射器の自社製作が可 能となり,当社の粒子線治療装置メーカーとしての実績を 背景としてより一層の品質向上に努め,多くの患者を治療 できる装置を提供していく所存である。

参 考 文 献

(1) 厚生労働省健康局:がん対策推進基本計画(2007年6 月発行)

http://www.mhlw.go.jp/shingi/2007/06/s0615-1.html

 (2) (財医用原子力技術研究振興財団:医用原子力だより6 号(2007年7月発行) http://antm.or.jp/01_outline/13.html

(3) Hirao, Y., et al. : Heavy Ion Medical Accelerator in Chiba : NIRS-M-89 (1992)

- (4) Iwata, Y., et al. : Performance of a compact injector for heavy-ion medical accelerators : Nuclear Instruments and Methods in Physics Research A 572, 1007~1021 (2007)
- (5) Iwata, Y., et al.: Alternating-phase-focused IH-DTL for an injector of heavy-ion medical accelerators: Nuclear Instruments and Methods in Physics Research A 569, 685~696 (2006)