素子	の品質	管理と	解析	技術

山下文昭* 楠 茂* 金 敏鎬**

Quality Control of Power Devices and Development of an Analysis Technique for Power Devices Fumiaki Yamashita, Shigeru Kusunoki, Minho Kim

要 旨

パワーデバイス実装過程で、モジュール内部に搭載され るIGBT (Insulated Gate Bipolar Transistor)や整流ダイオ ードなどのチップは、出力特性や制御機能の製品品質に及 ぼす影響が大きく、それぞれ要求される品質水準を十分満 足していることが求められる。また、組立て製造工程内で 発見されるチップ特性異常に関しては、デバイス性能上及 び製造面からも阻害要因となり、いかに付加価値が少ない 前工程段階で高機能、高精度の検査を実施し、工程内実動 作段階で異常を検出し取り除くかが重要である。ただし、 パワーデバイスの検査における問題点として、製造最終過 程で行う負荷特性検査において、要求規格を満足できない 特性値がまれに検出されることが挙げられる。そこで検出 された対象デバイスの特徴として、チップに関する内容は、 に確認されるのみで,破壊起点の詳細分析からは原因特定 まで至らないケースを経験している。

しかし過去においては、モジュール検査破壊モードから メカニズム推定を行い、具体的物理解析でチップ出力特性 検証を行い、デバイス特性不良の原因として、チップ内部 を起点とする破壊現象が確認される事例も報告されている。 今回、IGBTチップ低電流特性に着目した欠陥モード影響 の検証を基に様々な測定技法、物理解析手法を調査した。 トレンチIGBTのセル構造からメカニズム推定を行い、そ の中で最終製品破壊モードから課題解決を図るため、具体 的付帯設備の応用確立と、平行して社内外の解析評価設備 の活用事例を基に、チッププロセス品質管理を強化展開し たので、その実証事例について述べる。

IGBTチップ破壊外観事例と構造

モジュール内に搭載されるIGBTチップ破壊外観事例を左に示す。まれに特性検査工程や市場稼働中、チップの局所領域に過電流が流れ、素子の機能が失われる事象が確認される。破壊様相からエミッタ電極上に破壊痕が見られ、右に示すチップ構造からIGBTチップには特異起点となる内部の影響証明が困難となる。

1. まえがき

具体的事例として、チップ特性の目的が大電流を制御す ることであるIGBTチップは、その定格電流に合わせ、微 小なセルを多数並列に並べた構造のセル領域と高耐圧を保 持する終端領域、制御信号を各セルに伝達する配線領域で 構成されている。例えば,現在主流のCSTBT(Carrier Stored Trench-Gate Bipolar Transistor)チップでは、制 御電極であるゲート電極には幅1.0µm前後~サブミクロン のトレンチゲートが定格10A(2.5~4mm角)に対し、延べ 長さ1m以上で配置されている。したがって、製造過程で、 トレンチゲート幅に対し,加工に影響を与える程度以上の 異常が1か所でもあった場合、そこが特異セル(他のセル と異なった特性のセル)となる。特異セルが存在すると, 並列接続されたセル中,特異セルに電流が集中するなど, 電気特性に影響を与え、チップの破壊や信頼性不具合につ ながる危険性が危惧(きぐ)される。そこで、チップの仕上 がりに特異セルがある場合、テストで検出し、流出を防ぐ こと・要因を取り除くことを目的に、特異セルのモードと テストで識別可能な電気特性の関連付けを行い、物理解析 と電気特性評価を行う手法の開発を進めた。

2. 特異セルを含むチップの電気特性

2.1 IGBTの構造

トレンチIGBTのセル構造としてトレンチゲートに加え られる制御信号(ゲート電圧V_{GE})が閾値(しきいち)電圧 (V_{th})以上の場合, Pベース領域のトレンチゲート側がその 電位によってN型に反転し,電流がP⁺コレクタからN⁺エ ミッタに流れる。制御信号が閾値電圧以下の場合, チャネ ルが形成されず,電流は流れない。

2.2 特異セルの形成

IGBTチップには、1章で述べたようにセルが多数並列 接続されているため、製造過程で異物が付着した場合、形 状異常が発生することがある。一例として、図1にトレン チエッチ直前にトレンチゲート領域に異物が付着し、形状

図1. 異物付着と形状異常の一例

異常が生じた場合を示す。異物がエッチングマスクとなり, トレンチ形状に形状異常が生じる。

2.3 特異セルの電気特性

チップ本来の(設定した)閾値電圧に達しない電圧を印加 した場合でも,形状異常が発生した微小領域では,図2に 示すようにチャネルが形成される電位よりも高い電位に到 達する。

したがって、チップ全体の電流とゲート電圧の関係は、 図3に示すようになる。この領域は、ゲート電圧の低い状 態で最初にONし、一方、OFFする場合には最後にOFFす る。そのため、V_{CE}にサージ電圧が生じるOFF時に大電流 が微小な形状異常領域に集中し、図4のような破壊が発生 すると推測される。このモードを特性面で検出するために は、チップ定格電流数+Aに対して、局所ユニットセルに 限定した静特性は数μAレベルの精度が要求される。

3. 付帯設備の応用確立と物理解析手法の調査検証

従来, IGBTにおける高圧V_{th}分布異常やICES(主耐圧リ ーク)異常, IGES(ゲートリーク)異常など, デバイス内部 に起因するリーク不良やショート不良の故障箇所を特定し

図2. 形状異常領域(特異セル)でのチャネル形成

図3.形状異常領域(特異セル)を含むチップの静特性

解析を行うことは,技術的課題が多く困難とされていた。 しかし現在では,前処理法の手法改善,IRレーザ顕微鏡, レーザマーカを利用することで,EMS(Emission Microscope:エミッション顕微鏡)やIR-OBIRCH解析手法(Infrared Optical Beam Induced Resistance Change)を用い ることによって,特定された故障箇所の解析が可能となっ てきた。故障解析の中で重要なのは,①故障箇所を特定す る,②特定箇所を表面から分かるようにする,③故障モー ドに応じた適切な解析ツールを選択するの3項目が挙げら れる。次に,EMSとIR-OBIRCHを用いた故障解析の事例 手順について述べる⁽¹⁾。

3.1 前処理

EMSとIR-OBIRCH評価では、IRレーザ顕微鏡で撮った パターン像と故障箇所からの発光や信号を重ねることで、 故障箇所が特定できる。しかし、観察面にメタルがあると 発光やIRレーザが透過しないため、メタルの除去が必要 となる。メタルの除去方法は、樹脂に埋め込み研磨する方 法と薬液によるメタル除去方法がある。薬液法は故障箇所 が特定されれば、物理解析が容易なメリットがある反面、 電極が取れにくいという問題があり、一般的ではなかった。 最近、電極の一部を耐酸性保護材で保護し、ワイヤを残す 技術が確立された。この新技術を用いれば、特殊な装置が なくてもチップ裏面からゲートとエミッタ電極に結線する ことが可能になる。また、チップ表面が樹脂で覆われてい ないため、表面からの物理解析が非常に容易になる。

3.2 EMSとIR-OBIRCHによる故障箇所の特定

EMSでは、デバイスにリーク電流不良がある場合、電 Eを印加すると、その不良箇所に電界が集中しホットキャ リアが発生する。そして、再結合するときに放出される光 を検出することで、故障箇所を特定することができる。し たがって、EMSは絶縁膜の損傷やPN接合部の損傷による リークやショート箇所の特定に適している一方、大電流が 流れても配線間ショートなどホットキャリアが発生しない 故障モードには発光がないため、異常箇所の特定ができな いという特徴を持つ。

> 0 Vcc Vcc OFF→ON TIME 図 4. 破壊時の波形

IR-OBIRCHは、金属にIR(赤外線)レーザで熱を加える

と抵抗が増大し電流が減少する原理を利用する方法で、配線にIRレーザを走査したときの電流の大きさを明暗として検出することで、故障箇所の特定が可能となる。IR-OBIRCHでは、リーク電流の経路や配線間ショート箇所、配線中のボイドやSiの析出箇所などを特定することができる。図5にEMSとIR-OBIRCHの評価結果を示す。

3.3 解析箇所の確認

IRレーザ顕微鏡は光源である近赤外線レーザがSiを透過 するため、チップ裏面から表面のパターンを観察すること ができる。これを利用すれば、チップ裏面から故障箇所を 特定することも可能となる。

さらに、図6のように故障箇所近くにレーザマーカでマ ーキングをすれば、IRレーザ顕微鏡で故障箇所とレーザ マーキングの正確な位置関係が測定でき、3.4節で述べる 物理解析で失敗の可能性が少なくなる。

3.4 物理解析

故障箇所の解析は,故障箇所の大きさや位置,モードな どによって,断面研磨,SEM(走査型電子顕微鏡),FIB (集束イオンビーム),TEM(透過型電子顕微鏡)などの手 法を用いて行う。図7に故障解析の一例を示す。

(a) EMS (b) IR-OBIRCH 図5. EMSとIR-OBIRCH評価結果

(a) 光学顕微鏡像

(b) IRレーザ顕微鏡像

図6. レーザマーキングとIRレーザ顕微鏡像

図7. 故障解析の一例

図8. 高VceでのVm分布外れチップの微小リーク特性

4. IGBTの故障解析の事例

ここでは、IGBT故障におけるEMSとIR-OBIRCHで特 定できる故障と、特定できない故障の事例について述べる。 4.1 特性(I_e)、V_{tb}分布外れチップ解析

 V_{th} 評価で(規格内であっても3 σ 分布から外れるチップ) $V_{GE} = I_{ce}$ 特性を測定したところ,低いゲート電圧でC = E間 電流が流れ始めることが分かった(図8)。

リーク箇所の特定のために, EMSとIR-OBIRCH評価を 行った。その結果, IR-OBIRCHでは異常信号が検出でき なかったが, EMSではIGBTのメインセル内部で異常発光 が観測された。これらの結果から, ゲートとSi基板間のシ ョート(ゲート酸化膜の破壊)ではなく, PN接合部におけ るリーク起点の可能性が高いと推測された。これを解析し た結果, ゲート酸化膜に異常はなかったが, **表1**(a)のよう なトレンチゲートが局所的に細い特異形状であることが発 見された。

このV_{th}異常のメカニズムは,解析結果からトレンチゲートが局所的に細くなったことによって,電界が集中したために低いゲート電圧でもゲートが開くようになったと推測される。

4.2 G-E間リーク不良

IGBTのG-E間リーク不良品でEMSとIR-OBIRCHによ る故障箇所の特定を行った結果,EMSとIR-OBIRCHとも に,複数箇所でリーク起点及び信号が検出された。EMS とIR-OBIRCHの両方で異常が検出されたことから,ゲー ト酸化膜の異常によるG-E間でPN接合を経由してリーク していることが予想された。さらに現物を解析した結果, 表1(b)のようなトレンチゲート底部のゲート酸化膜に異常 があり,ゲートとSi基板がショートしているモードが発見 された。

4.3 G-E間ショート不良

IGBTのG-E間ショート不良品については、IR-

表1. 各故障モードの物理解析結果事例模式図

故障モード	(a) V _{th} 異常	(b) G-E間リーク	(c) G-E間ショート
EMS	0	0	×
IR-OBIRCH	×	0	0
故障箇所の 模式図	$ \begin{array}{c} $	E N ⁺ P ⁻ G N ⁻ W	E N ⁺ P ⁻ G N ⁻

OBIRCHのみメインセル内部で異常信号が検出された。

解析した結果,**表1**(c)に示すようなトレンチゲートの開 口部の形状異常で,ゲートとエミッタ電極が直接ショート していることが確認された。

5. 今後の課題

IGBT故障における故障解析の手順と,EMSとIR-OBIRCHで特定できる故障と特定できない故障の事例につ いて述べた。EMSとIR-OBIRCHは,故障箇所の特定で非 常に有用なツールであるが,故障を検出するメカニズムが 異なるためすべてのモード故障には対応できず,デバイス の故障モードによって使い分ける必要がある。故障解析の 成功率と効率をアップさせるためには,電気特性評価結果 から故障モードが予想できるデータベースとノウハウの蓄 積が必要である。また,EMSとIR-OBIRCH を用いたこ とで,故障状態が断定できる確率は非常に高くなってきた が,現状は故障の原因究明までは至らないケースが多い。 FIBやTEMなどの物理解析によって,故障の現象から詳 細な解析を行い,また解析を通じてデータ蓄積を行う。発 生対策と流出対策の両面でチッププロセスにおける品質管 理強化を進める。

6. む す び

具体的破壊モードに限定しユニットセル領域の解析手法 や特性モードの事例を挙げて述べた。特性異常や,破壊モ ードは実装状態に近い環境でいかに検出するか,不具合発 生時の原因を究明することによって改善の具体性が出てく る。また,発生メカニズムを明確にすることが直結した重 要課題である。

参考文献

(1) 井原惇行, ほか:最新電子部品・デバイス実装技術便覧(2002)