"WS-Vシリーズ"のアーク走行遮断技術

牧田 陽* 飯塚貴士*** 中川 淳** 黒崎剛史***

Arc Commutation Circuit Interruption Technologies for MCCB of "WS-V Series" Yo Makita, Jun Nakagawa, Takeshi Kurosaki, Takashi Iitsuka

要 旨

近年,機械装置・制御盤の小型・大容量化の進展に伴い, 搭載する低圧遮断器にも小型・高遮断容量化のニーズが高 まっている。"WS-Vシリーズ63Aフレームクラス"では新 遮断技術"アーク走行遮断技術"を採用し,業界最小となる 3極品での横幅54mmと遮断容量の格上げ(Ics^(注1)三菱電機 現行品:4→8kA)の両立を実現した。

アーク走行遮断技術は,遮断初期の接点開離時に発生し たアークを,接点からグリッド等の他の消弧が容易なエリ アまで高速に転流・走行させる遮断技術であり,従来の1 点切遮断技術と比較して,より小さなアークエネルギーで (注1) 三回遮断容量 の遮断が可能となる。これまでは主にMCB(Miniature Circuit Breaker)等の小型ブレーカに用いられてきた。今 回,この方式を業界で初めてMCCB(Molded Case Circuit Breaker)へ採用し,63A定格機種F Styleとして新たにラ インアップし,高遮断容量・小型化を図った。

アーク走行遮断技術の性能向上開発として,①アーク転 流の高速化,②消弧グリッド内での消弧性能安定化,を指 向した。とりわけ,アーク挙動に影響を与える電界,ガス 流,及びアーク駆動電磁力の3因子に着目し,先に述べた ①②に対して最も効果的な因子を制御する手法を開発した。 本稿では,これらのアーク走行遮断技術について述べる。

新型ノーヒューズ遮断器・漏電遮断器"WS-Vシリーズ"のアーク走行遮断技術

WS-Vシリーズの新型ノーヒューズ遮断器 "NF63-SVFシリーズ" では、新遮断技術 "アーク走行遮断方式"の採用によって、機械装置・制御盤の小型化ニーズを満足した業界最小となる3極品での横幅54mmを実現した。

1. まえがき

近年,機械装置・制御盤の小型・大容量化が進展しており,搭載する低圧遮断器にも小型・高遮断容量化のニーズ が高くなりつつある。このような背景から,当社では WS-Vシリーズ63Aフレームクラスに新遮断技術"アーク 走行遮断技術"を適用した小型・高遮断容量ノーヒューズ 遮断器F Styleを製品化した。製品化に当たり,①アーク 転流の高速化,②消弧グリッド内での消弧性能安定化を指 向した。とりわけ,アーク挙動に影響を与える電界,ガス 流,及びアーク駆動電磁力の3因子に着目し,先に述べた ①②に対して最も効果的な因子を制御する手法を開発した。

これらの技術を駆使することで、63A定格機種でMCCB 業界最小となる横幅54mmと遮断容量の4kAから8kAへ の格上げを両立した。本稿ではこれらのアーク走行遮断技 術について述べる。

2. NF63-SVFとアーク走行遮断技術の特徴

2.1 54幅63A定格F Styleの概要

NF-63SVFシリーズの製品仕様を表1に示す。今回新 たにシリーズ化した63A定格F Styleは,現行製品に比べ

フレームA				63	
形名				NF63-SVF	
定格電流A				63	
極数				2	3
定格絶縁電圧V				440	
定格遮断容量(kA)	JIS C 8201-2-1 Ann1 JIS C 8201-2-1 Ann2 IEC 60947-2 EN 60947-2 (Icu∕Ics)	AC	690V	-	
			500V	-	
			440V	7.5 ⁄ 7.5	
			415V	10/8	
			400V	10/8	
			380V	10/8	
			230V	15/15	
		DC	250V	-	
			125V	10/10	
	GB 14048.2 (Icu∕Ics)	AC	415V	10/8	
			400V	10/8	
			380V	10/8	
			230V	15/15	
		DC	250V	-	
			125V	10/10	
	NK (Icu∕Ics)	AC	450V	-	
			240V	-	
		DC	250V	-	
外形 寸法 (mm)			а	36	54
			b	100	
			с	68 90	
(11111)			ca		
電気用品安全法				適合	
CEマーキング				TUV認証	
CCC認証				適合	
JIS :日本工業規格 NK :日本海事協会規格 IEC :国際標準会議規格 CE :欧州認証 EN :欧州規格 TUV:テュフラインランド国際認証 GB :中国規格 CCC :中国認証					

表1. 63A定格F Styleの製品仕様概略

筐体(きょうたい)容積を約50%小型化(75×130×68mm→ 54×100×68mm)したとともに,遮断容量はIcsを4kAか ら8kAに格上げした。小型化しながら高遮断容量化を実 現するため,同機種では,これまで主としてMCB⁽¹⁾⁽²⁾等の 小型ブレーカに用いられてきたアーク走行遮断技術を業界 で初めてMCCBに適用した。

2.2 アーク走行遮断技術の特徴

アーク走行遮断技術は,接点開離時に発生したアークを グリッド等の消弧が容易な空間まで高速に転流・走行させ ることによって,従来の1点切よりも優れた限流性能を実 現した遮断技術である。この方式におけるアーク挙動と遮 断電流・電圧波形との対応を図1と図2に示す。消弧室は 可動子,固定子,可動子側ランナ導体(可動ランナ),消弧 グリッドによって構成されている。図1,図2の①~④の 過程でのアーク挙動について述べる。

- ①可動子が開極し始め、接点間でアークが発生すると、 アークが磁気駆動力と筐体内の雰囲気圧力の上昇によって図1下方に引き伸ばされ、アーク電圧が上昇を始める。
- ②可動子上のアークが可動ランナに転流し、固定子と可 動ランナの間に形成されたアークはグリッドに向かっ て走行を開始する。

図1. アーク走行遮断時のアーク挙動

図2. アーク走行遮断時の電流・電圧波形一例

- ③アークがグリッドに到達し,分断アークが形成される と,アーク電圧は急激に上昇する。
- ④分断アークがグリッド内部で冷却されアークが維持で きなくなり消弧する。

この方式では、開極から消弧まで、アークを転流、走行 させる高度なアーク制御技術が不可欠となる。優れた遮断 性能を得るためには過程①~④の中でも、開極直後の転流 過程とグリッド到達後の分断アークを冷却する消弧過程の 安定維持が重要となる。先に述べた性能を達成するために、 **3章**で述べる遮断時の電界強度、ガス流分布やアーク駆動 電磁力に着目したアーク制御技術を新たに開発し、性能向 上を図った。

3. 電界,ガス流,及びアーク駆動電磁力に着目した アーク走行制御技術

3.1 電界制御による転流高速化

開極初期のアーク挙動について,電磁力や圧力によるア ーク駆動力に加え,可動子と固定子の間に形成される電界 分布と電界ベクトルの方向が転流性能に影響すると考え, 電界解析による接触子の形状最適化設計を実施した。図3 に開発初期品の電界分布を示す。矢印は導体表面における 電界ベクトルを示している。可動子表面の電界強度は接点 表面上が最も高く,その方向は固定接点に向いている。開 極直後の円滑なアークの転流には可動接点から可動子先端

図3. 電界強度分布(開発初期品)

図4. 電界強度分布(改良モデル)

までの電界強度の均一化と,電界方向を転流先である可動 ランナ側に向けることが必要であると考えた。そこで可動 ランナの可動子近傍の形状をV字形化し可動子先端の電界 をより集中させ,可動子先端形状自体も改良することで電 界方向が可動ランナ側へ向くように最適化した。

改良形状での電界解析の結果を図4に示す。可動子上の 電界強度の均一度を,可動子先端のA点と可動接点上のB 点の電界強度比で定義すると,開発初期品が0.05であるの に対し改良品では0.5に改善した。さらに両形状でアーク 発生から可動ランナ・固定子間にアークが転流するまでの 時間を比較した結果,1.0msから0.6msに短縮した。このよ うに可動子,固定子,可動ランナ間の電界分布の最適化に よって,転流性能が向上することが確認できた。

3.2 熱ガス流制御及び電磁駆動力強化による消弧性能安定化

アークがグリッドへ到達し分断, 冷却される消弧過程で は, アークがグリッド内でいかに安定維持できるかが優れ た消弧性能を確保する上でのポイントとなる。一方で, グ リッド内で分断アーク状態を安定維持するには, 電磁力や 圧力勾配(こうばい)によるアーク駆動力のバランス維持が 重要となる。そこで, 熱ガス流解析技術を用いて排気口の 形状を最適化し, その上で, グリッド部の電磁力解析によ るアーク駆動電磁力の強化設計を実施した。次に解析手順 について述べる。

図1,図2に示した遮断時のアーク位置及び発熱量を考 慮した発熱源を設定し、ガス流分布の時間変化を解析した。 発熱量としてアークエネルギーによるジュール熱(IV積) を設定し、熱伝導方程式及びNavier-Stokes方程式を解い た。排気口形状の最適パラメータの抽出ではタグチメソッ ドを適用し、グリッド入り口から排気口におけるガス流分 布が均一になるように形状を最適化した。図5に最適化後 のガス流分布を示す。この最適化設計によって固定子と可 動ランナ近傍の流量比は0.3から0.8へと向上し、ガス流分 布解析による流路形状設計の有効性を確認できた。

流路形状を最適化した上で,転流後のアークがグリッド 到達直前の位置にある状態を模擬してアークの駆動電磁力

図5. 遮断時のガス流分布(改良モデル)

を解析した。その結果,図6に示すとおり固定子近傍のグ リッド厚を0.8mmから2.4mmに増強することでアーク駆動 電磁力を約3割増強することができた。これらの結果を単 極試作器の構造に反映し,遮断試験によってアークがグリ ッドに到達してから遮断までの平均アーク電圧を比較した 結果,250Vから350Vに上昇し,冷却性能向上を確認でき た。

3.3 製品形態における遮断性能検証

図7と図8に、製品形態における遮断試験時の電流・電 圧波形とアーク観測画像の一例を示す(短絡電流10kA)。 図7中の(1)~(5)は図8の番号にそれぞれ対応している。(1) で接点間でアークが発生し、(2)、(3)で接点間のアークが可 動ランナへ転流し、グリッドへ走行している。さらに(4)で グリッド内でアークが良好に維持され、(5)で消弧し1/2サ イクルで良好に遮断完了している。また、図9に示した旧 WSシリーズとWS-Vシリーズの性能比較では、電流ピー ク(I_{pk})と注入アークエネルギー(I²t)はそれぞれ45%、75% 削減しており、大幅な性能向上を実現した。これによって、

筐体容積の約50%削減と遮断容量を2倍向上(Ics=4→8kA)の両立を達成した。

4. む す び

63Aフレームに新たにラインアップしたF Styleに搭載 したアーク走行遮断技術の特徴と,電界制御技術によるア ーク転流の高速化とガス流及びアーク駆動電磁力制御によ る消弧性能安定化について述べた。今後更に適用機種の拡 大と使用電圧範囲の拡大に取り組み,ユーザーニーズに対 応した遮断技術開発に取り組んでいく。

参考文献

- 石田 伸,ほか:UL489対応ノーヒューズ遮断器 "NF50-SMUシリーズ",三菱電機技報,79,No.6, 405~408 (2005)
- (2) 三橋孝夫,ほか:UL489対応ノーヒューズ遮断器
 "NF50-SMUシリーズ"の遮断技術,三菱電機技報, 79, No.6, 409~412 (2005)