

MITSUBISHI DENKI GIHO 三菱電機技報

Vol. 48 March 1974 回転機絶縁技術特集

関西電力㈱奥多々良木発電所向け 320,000kVA 300rpm発電電動機固定子

三麦電機技術

回転機絕緣技術特集

目次

《符集論义》		
回転機絶縁技術の展望	鉄雄…	289
新高圧発電機エポキシ絶縁		
柴 山 恭 一・平 林 庄 司・川 上 剛・松 田 禎 夫・磯 間 信 也・神 野 忠 和・伊藤昭	昭八郎…	291
最近の高圧電動機絶縁・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	陽一…	297
高圧電動機レジンリッチ絶縁・・・・伊藤昭八郎・中村陽一・平林庄司・農守熊太郎・坂上義和・五島	浩 一…	303
高電圧回転機用エポキシ含浸樹脂と集成マイカ材料の開発・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	達夫…	308
回転機巻線の機械的諸問題の検討村 上 晃・二川 暁 美・山 崎 真 治・川 上	: 剛…	315
回転機絶縁開発における信頼性解析システム下 地 貞 夫・高 倉 康 一・平 林	: 庄 司…	321
低圧誘導電動機のF種絶縁 脳 坂 信 隆・堀 内 勝 彦・柴 田 美 夫・坂 田 桂 三・玉 越	泰彦…	327
電動機絶縁の耐環境性評価脇 坂 信 隆・杉 田 保 彦・坂 田	桂三…	334
ハーメチックモータ絶縁の評価根本順三・玉越泰彦・戸崎保弘・時田祐佐・山本	: 勝 治…	338
高圧水中モートルの絶縁	五朗…	344

7.2 kV 屋外用手動式 高圧気中負荷開閉器 • 7.2 kV 屋内用 高圧断路器

《特許と新案》 349

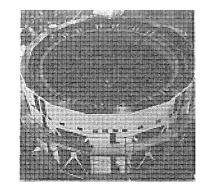
除霜装置・通電加工用電極の修正装置・スタンド支柱取付装置・電解加工装置

《表紙》一

《普通論文》

表紙 1 関西電力(株) 奥多々良木発電所向け 320,000 kVA 300 rpm 発電電動機固定子

写真は、関西電力(株)奥多々良木発電所向け320,000 kVA 発電電動機固定子の工場完成状況を示す。との発電電動機の容量は国内最大で、世界的にも最大級の記録品であり、高圧固定子コイル絶縁には、新しく開発したエボキシレジンによる新ダイヤラスチック絶縁が採用されている。 現在、昭和50年4月の運転開始を目標に鋭意据付中である。との発電電動機のおもな仕様は下記のとおりである。発電電動機仕様


発電機定格 320,000 kVA 18 kV 10,260 A 60 Hz 300 rpm 力率 0.95 電動機定格 314,000 kW 18 kV 10,290 A 60 Hz 300 rpm 力率 1.0 励磁装置 サイリスタ励磁方式

始動裝置 直結誘導電動機(電動機始動時使用) 製作台数 2台

表紙 2 三菱静止形 CVCF 装置

表紙 3 三菱シーケンサ MELSEC-310

表紙 4 三菱ミニコンピュータ MELCOM 70

Vol. 48 No. 3 MARCH 1974

MITSUBISHI DENKI GIHO

SPECIAL EDITION FOR INSULATION TECHNIQUE ON ROTATING MACHINES

CONTENTS

SPECIALLY COLLECTED PAPERS
New Epoxy Insulation for High Voltage Generators
Mars Die Ferns J. Jaine S. Hirabayashi • T. Kawakami • S. Matsuda • S. Isoma • T. Jinno • S. Itô · · · 29
New Dia-Epoxy Insulation for Large AC MotorsS. Hirabayashi • O. Hayashi • W. Bitô • S. Itô Y. Nakamura29 Development of Resin-Rich Insulation System for High Voltage AC Motors
S. Itô · Y. Nakamura · S. Hirabayashi · K. Nômori · Y.Sakaue · K. Goshima · · 30
Development of Epoxy Impregnating Resins and Reconstituted Mica Materials for High Voltage Rotating Machines
K. Shibayama - K. Okahashi - T. Kitagawa - 30
Investigation of Mechanical Problems on Stator Windings
Development of Reliability Analysis System for Rotating Machine Insulation
S. Shimoji • K. Takakura • S. Hirabayashi · · 32
Class F Insulation for Low Voltage Induction Motors
N. Wakizaka • K. Horiuchi • Y. Shibata • K. Sakata • Y. Tamakoshi · · 32
Evaluation of Motor Insulation for Various Environment N. Wakizaka Y. Sugita K. Sakata 33
Evaluation of Hermetic Motor InsulationJ. Enomoto • Y. Tamakoshi • Y. Tozaki • Y. Tokita • K. Yamamoto33 Insulation System of High Tension Submersible Pump MotorsN. Wakizaka • Y. Wada • G. Kawaguchi34
The Handard Control of Figure 1 and 140000
TECHNICAL PAPERS
Seismic Test of Electric Equipment for Nuclear Power Stations
Electric Apparatus for Ring Spinning Machines
An Attitude Control Simulator for Geostationary Satellite
N. Wakasugi • H. Yoshino • H. Kanai • K. Kokatsu • K. Sawada · · 368
Type M 345 M Color Character Display System H. Obata • H. Itô • K. Kobayashi • E. Yamazaki • M. Yamamoto 376
Fixed Head Magnetic Disk Memory Device H. Shibuya • N. Higashiyama • T. Hashimoto • M. Sasaki • H. Kishi381
Computor Control of Unmanned Ocean Space Robot
Control System for Magnetic Levitation Vehicles
NEW PRODUCTS 399
PATENT AND UTILITY MODEL 345

COVER:

Stator of 320,000 kVA 300 rpm Generator Motor for Okutataragi Power Plant, Kansai Electric Power Co.

The picture shows a stator of 320,000 kVA generator motor in completion at the factory. The machine is built for Okutataragi power plant of the Kansai Electric Power Co., having a capacity largest in this country and being an epochal product even in the world. The high voltage stator coils are insulated with Dialastic made of epoxy resin newly developed by Mitsubishi. The machine is now being assembled with the utmost care in the site to meet a target of beginning the operation in April, 1975. The principal specifications of the machine are as follows.

Generator rating: 320,000 kVA 18 kV 10,260 A 60 Hz 300 rpm at 0.95 power factor

Motor rating : 314,000 kW 18 kV 10,290 A 60 Hz at 1.0 power factor

Exiter equipment: Thyristor exicitation type

Starting device ; Directly connected induction motor (To be used for starting the motor)

Number of units to be built: Two

「三菱電機技報」アブストラクト

UDC 621.313.322.043.2.045.6.048:(621.315.617:678.686) 新高圧発電機エポキシ絶縁

柴山恭一・平林庄司・川上 剛・松田禎夫・磯間信也・神野忠和 伊藤昭八郎

三菱電機技報 Vol.48.No.3·P291~296

最近の事業用発電機の単機容量の増大はめざましく、高圧固定子絶縁に対し高い信頼性が求められている。これにこたえるため、昭和29年国内最初の熱硬化性レジン絶縁としてダイヤラスチック絶縁を実用に供し、それまでのアスファルト絶縁より飛躍的な性能向上に成功して以来、いくたの改良を重ねてきたが、このたび、含浸レジンのエポキシ化を中心に集成マイカを適用した新しいエポキシ絶縁を開発、実用化した。この絶縁方式は下極(155℃)の耐熱性をもち、機械的電気的特性・耐 ヒートサイクル性にすぐれ、とくに超大形機・発電電動機などに適し ている。ここでは、レジンの特性、コイルの性能などについての評価 試験の結果を紹介する。

UDC 621.313.13.048:621.315.6:678.643

最近の高圧電動機絶縁

平林庄司・林 修・美藤 亘・伊藤昭八郎・中村陽一

三菱電機技報 Vol.48·No.3·P297~302

最近の回転機の傾向として大容量化、耐熱性向上が行なわれるようになってきた。当社では昭和41年にエポキシレジンを用いた全含浸方式と称する真空含浸処理を行なったダイヤエポキシ絶縁を6.6kV以下の高圧電動機に適用し8年余り経過した。この間さらにレジンの高温時の特性、含浸性等について改良を加え、このたび高温時の特性に優れた耐熱性の良い新エポキシレジンを完成するにいたった。

このレジンは室温においても低粘度なので含浸性が良く非破壊特性についても 良好となり一層信頼性が 緑はその性能がさらに向上 らゆる環境に耐えるもので ある.

UDC 621.313.13.048:621.315.6:678.643

高圧電動機レジンリッチ絶縁

伊藤昭八郎 中村陽一·平林庄司·農守熊太郎·坂上義和·五島浩一 三菱電機技報 Vol.48·No.3·P303~307

レジンリッチ絶縁は、Bステージの熱硬化性樹脂を多量に含んだプリプレグ 集成マイカを使用するため、熱プレス成型をするだけで、絶縁工作が完了する ので、含浸作業を省略できるという利点がある。当社では、この方式の利点に 着目し、早くから高圧電動機の主絶縁に使用し得るレジンリッチ絶縁方式の開 発を進めてきた。その結果、電気特性・機械特性などの初期特性や熱劣化、課 電劣化に対する長期信頼性においても、はがしマイカを使用し真空含浸方式で 製作した従来からの絶縁にくらべ、まったくそん(遜)色がなく、十分実用化で きる見通しを得、すでに数 台の実用機を製作するに至った。ここに当 を報告する。

UDC 621.3.048:678.643:549.623.5:621.313.1

高電圧回転機用エポキシ含浸樹脂と集成マイカ材料の 開発

柴山恭一・岡橋和郎・北川達夫 三菱電機技報 Vol.48·No.3·P308~314

大形発電機の高電圧絶縁用としてエポキシ系含浸樹脂 4 種類および集成マイカ材料を開発した。これらの材料およびマイカエポキシ複合絶縁物の諸特性とモデルコイルによる特性との関係をは(把)握しより高度の信頼性を有する絶縁方式を開発することを指針とした。なお、ここで開発された材料を用いて製作した絶縁コイルは、tanδの電圧特性・機械的性質・熱安定性・ヒートサイクル特性が非常にすぐれており、発電機の大容量化に対処しうる高度の信頼性を有している

UDC 621.313.1.045:621.315.61:531.78:539.37.4:620.199:620.17 回転機券線の機械的諸問題の検討

村上 晃・二川暁美・山崎真治・川上 剛 三菱電機技報 Vol.48·No.3·P315~320

回転機の単機大容量化、小形軽量化に伴って、回転機卷線に作用する機械的外力はますます増大する傾向にある。このため機械的観点から回転機巻線の強度問題を検討しておくことが一つの重要な課題になる。筆者らは、このような情勢にかんが(鑑)み、回転機巻線の機械的諸問題に関するより精密な一連の検討を重ねてきた。本文はこれらの概要を紹介したもので、回転機巻線の機械的諸問題とその検討に対する基本的考え方、回転機巻線の構成材料の評価とその問題点複合構造体の観点からの回転機巻線の力学的学動、および破壊機構の検討、か(稼)動時に回転機巻の向前、か(稼)動時に回転機巻の検討について述べている。

UDC 621.313.322.048:681.3.004

回転機絶縁開発における信頼性解析システム

下地貞夫・高倉康一・平林庄司

三菱電機技報 Vol.48·No.3·P321~326

高圧回転機絶終開発の一端として、新絶縁組織の設計・製作・試験などの信頼性管理を主目的とした信頼性解析システムを開発し、実用化した。この解析システムは、絶縁組織の材料・製作プロセス・測定値などに関する全テストサンブルデータの電算機ファイリング システムである。

この解析システムの特長は、データの登録・修正が容易であること、作表、統計解析・シミュレーションなど多くの応用解析が直接可能なことである.

開発した信頼性解析システムの構成・機能・解析例などの概略を簡単に報告する。

UDC 621.313.3:621.315.6

低圧誘導電動機のF種絶縁

脇阪信隆・堀内勝彦・柴田美夫・坂田桂三・玉越泰彦

三菱電機技報 Vol.48·No.3·P327~333

誘導電動機の歴史は小形軽量化と密接な関係があり、これには冷却通風の改善等の設計技術や製造技術の進歩のほかに、絶縁材料の進歩に負うところが大きい。特に絶縁材料については高分子化学分野の著しい発展により多くの新材料が開発されている。誘導電動機の絶縁種別においても、A種からE種となり、現在ではE種からF種への移行が検討されている。

ここでは、F種絶縁採用の背景やその利点を簡単に述べ、次に当社の新しい 低圧F種絶縁組織について、組織選定の検討手順、各種機能評価試験等を中心 にその具体的な内容を紹介 し、関係各位の参考に供するものである。

UDC 621.313.13:621.315.6

電動機絶縁の耐環境性評価

脇阪信隆・杉田保彦・坂田桂三

三菱電機技報 Vol·48·No.3·P334~337

厳しい環境において、電動機が機能を満足に果すためには、耐環境性の良い 絶縁組織が必要である。そのためには、絶縁材料だけでなく、絶縁処理の完了 したコイルまたは実機について、耐環境性評価を行ない、信頼性を確認してお く必要がある。

当社では、絶縁組織を開発するにあたって、各々の環境に応じた評価試験を 実施し、信頼性の高い電動機を顧客に提供している。

ここでは、はん(汎)用電動機を中心として、多湿場所、塩分の多い場所、じんあい(塵埃)の多い場所な よび防食形電動機などの絶 を対象とした耐環境性評価について述べ

Z

「三菱電機技報」アブストラクト

UDC 621.313.13.048:621.317.73

ハーメチックモータ絶縁の評価

・ 榎本順三・玉越泰彦・戸崎保弘・時田祐佐・山本勝治

三菱電機技報 Vol.48·No.3·P338~343

冷凍・空調機器に使用されるハーメチックモータの性能および信頼性向上と 小形軽量化をはかるため、絶縁組織の耐熱性向上が要求されている。これに対 処するためには、使用する絶縁組織を正確かつ短期間に評価し決定する必要が ある

ハーメチックモータは一般の電動機とは異なり、密閉された冷媒と冷凍機油からなるふん開気中で使用されるため、その絶縁評価にも異なった方法が必要である。ここでは、耐熱絶縁材料の単体評価試験、絶縁組織の機能評価のために当社で新しく開発した試験装置の概要、および最終評価としての実機試験について述べる。

UDC 621.313.3:621.65:621.315.61 高圧水中モートルの絶縁 脇坂信隆・和田義彦・川口五朗 三菱電機技報 Vol.48·No.3·P344~347

工業・土木・農業用水・水道水などのポンプ駆動用としての水中モートルポンプの需要は、その利点と経済性が一般的に認識されるに従って増加の一途をたどっており、次第に大容量機の利用が進みしかも高圧級(3,000V,及び6,000 V)での需要が急増している。

当社は1965年4月以降多数の高圧水中モートルを納入してきたが、現在まで全く無事故で運転されており、このことは高圧水中モートルが地上で運転される高圧モートルと同様な信頼性をもっていることを示している。本文は高圧水中コイルの工作法と実機の 運転実績などについて紹介し、各位のご参考に供したい

UDC 621.311.25:621.039.56:699.84.001.45 原子カプラント用 電気機器の耐震試験 八島英之

三菱電機技報 Vol.48.No.3·P351~359

原子力発電所において、原子炉の安全停止および放射性物質の放出の防止に 関連ある電気機器に対じては、きびしい耐震性が要求されている。これらの機 器の耐震性能を実証するために、代表的な盤、開閉装置、ならびに取付けられ る継電器のような器具単体について耐震試験を実施した。その結果、これらの 機器は、現在の原子力プラントで想定されている地震環境を上廻る条件で試験 を行なうとき、機械的にも機能的にも十分耐震性を有することが確認された。

UDC 621.316(677.05) リング精紡機用電機品 中沢俊郎・松本圭二・金子正雄 三菱電機技報 Vol.48·No.3·P360~367

ニ菱電機技報 VOI.48·No.3·P360~367

かつて我国第一の産業であり、今なお、基幹産業の一つである繊維産業では 早くから省力化が要望されてきたが、その中でも特に機台数が多く、精紡工程 の中で重要な役割を果すリング精紡機の電機品を手がけた。

これは、精制工程の無人化への第一歩を踏み出す画期的なものであるが、それだけに電機品に対する要求はきびしく、いくつかの難題があったが、新しい制御方式をとり入れて応ずることができた。

本文ではリング精紡機の概要とその電機品について紹介する.

UDC 629.19.001.57

静止衛星の姿勢制御試験装置

若杉 登·芳野法象·金井 宏·小勝国弘·沢田籴二 三菱電機技報 Vol.48·No.3·P368~375

静止軌道に打ち上げられた人工衛星の姿勢のシミュレーションは、一般的には計算機によって行なうが、宇宙空間の運動を模擬する3軸の自由度をもつ空気軸受を使用すれば、ハードウエアシミュレーションが可能となる。ハードウエア シミュレーションによって、衛星ダイナミックスの解析ができることはもちろんであるが、ジェットスラスタ、制御エレクトロニクスなど、サブシステムの開発にも有効である。また姿勢制御の操作技術の習得も行なうことができる。これら、衛星の基幹技術の一つである姿勢制御技術の習得を目的として、当所において姿勢制御試験 装置を社内開発したので、その概要を紹介する。

UDC 681.3.07:658.087

M345M形 カラーキャラクタディスプレイ装置 小畑 甫・伊藤 均・小林啓二・山崎英蔵・山本正勝 三菱電機技報 Vol.48·No.3·P376~380

端末システムのインテリジェンス化を容易に実現可能なマルチスティション 形のM345M形カラーキャラクタ ディスプレイ装置を開発した。

本装置は制御部にミニコンピュータを使用しており、端末システムのデータ 処理はもちろん、複数台のディスプレイ装置の制御をもそのプログラムで処理 しており、あらゆるシステムに適合可能なフレキシビリティを持つ。本文にお いては、本装置の試作装置に関する概略を紹介する。

UDC 681.327.6

固定ヘッド型 磁気ディスク記憶装置 渋谷博史・東山 男・橋本嘉夫・佐々木勝・岸 肖 三菱電機技報 Vol.48·No.3·P381~386

電子計算機の進歩と共に、その周辺装置の一部であるランダム アクセスメモリとしての固定ヘッド型磁気ディスク装置においても技術革新が著しい。当社でも、これまで数機種の固定ヘッド型磁気ディスク装置を開発し、生産してきたが、さらに高ビット密度、大容量、高信頼性の新機種M814、M824を開発し、すでにMELCOM-80、MELCOM-70等において実用に供されている。本文ではこれら新機種の概要ならびに、開発の際の技術的問題点等について述べている。

UDC 551.46:62.52

無人海洋計測ロボットの計算機制御

小寺嘉一・荒屋真二・武田捷一

三菱電機技報 Vol.48·No.3·P387~392

海洋・海泉計測用ロボット航走体の計算機制御の方式について述べている。 本航走体は論理制御装置としてミニコンピュータを積載し、水中通信装置、計 測データ・機体運動データのオンライン処理・姿勢・軌道の司令制御および、 審故・故障の診断・対策までを管理する。

ここでは航走体の計算機制御に必要な位置・ 姿勢情報の処理、とくに計測維 音等の処理と推定・予測計算の手法と計測用パタン航行の実現のための運航司 令の方法についてふれ、若干のシミュレーション結果とともに報告した。

「三菱電機技報」アブストラクト

UDC 625.391.621.337 磁気浮上走行車 制御装置 白庄司昭・六藤孝雄・太田征四郎 三菱電機技報 Vol.48·No.3·P393~398	
超高速鉄道の研究開発のため、磁気浮上走行試験装置が、鉄道技術研究所構内に建設され、鉄道100年記念事業の一環として一般公開された。この磁気浮上走行試験装置は、地上1次リニアモータ(LIM)によって浮上走行車を推進する方式をとっている。各LIMには、サイリスク電源装置から給電されるが、走行車の位置に対応して給電対象のLIMを切り換えるとともに、大幅に変化する走行抵抗に応じてLIMの推力を制御し、所定の走行バターンで自動走行させる制御装置を有している。本文では、この制御装置について述べる。	
	4

回転機絶縁技術の展望

生產技術研究所 柴 田 鉄 雄

1. まえがき

産業の発展に伴い、電気機器の使用は飛躍的に増加し、その使用 分野も拡大し多様化してきている。これにつれて回転電気機器の果 たすべき使命もますます重要となり、その性能や信頼性に対する要 求も多様化するとともに、一層きびしくなってきている。

回転電気機器の重要な構成要素である絶縁については、電力用大容量発電機から小容量はん用電動機にいたる広範囲の用途に関して、要求される問題は変化に富んでいるが、合成樹脂をはじめとする化学工業の進歩により出現した多くの新しい材料と生産設備機器の発達、絶縁機能評価法および信頼性評価手法の向上などがあいまって、その絶縁方式はいちじるしく進歩してきた。

回転機絶縁特集号の刊行に際して、絶縁方式を主体に代表的な二・三の回転機絶縁について、その動向をのべ当社の絶縁技術開発の指向する方向と開発体制についてふれたい。

2. 回転機の動向

最近の事業用 タービン発電機は電力業界からの要請と機器の設計・製造技術の進歩により、単機容量が急激に増大している。当社においても現在、原子力発電用として定格容量 1,300 MVA 定格電圧 24 kV 4P 機を製作しており、 数年後には定格容量 1,500 MVA から 2,000 MVA, 定格電圧 28 kV から 30 kV の大容量 タービン発電機が出現するものと考えられる。

また、ガスタービン駆動のパッケージ形タービン発電機や高揚程大容量発 電電動機が時代の要請により急増している。

発電機の大容量化・高電圧化にともない、発電機絶縁はますます 高い信頼性が要求されており、これにこたえるため電気的特性はも ちろん、機械的特性さらには発電機 コイルの水冷却法の適用などに より耐水性など、諸特性の向上が必要とされている。

特にガスタービン駆動の発電機や 揚水用発電電動機 などにおいては、 頻ぱんな起動停止によるくりかえし熱応力に耐えるとともに強じん な機械的強度、小形軽量化のためF種絶縁の適用など耐熱性の向上、 さらには発電機の冷却構造や据付環境により耐水性・耐じん(塵)性 ・防食性などが要求されている。

高電圧電動機は広はんな需要分野に対しその用途はますます多様 化している。プラント 規模の増大に伴う機器容量の増加,運転効率の 向上,小形軽量化,低騒音化,運転保守の簡易化,対環境性の向上など,多角的できびしい要求がなされている。電動機の絶縁は普遍的で "タフ" な絶縁 システム の適用によって, これらの要求を みたすとともに標準化をはかる必要がある。

中小形はん用電動機は基幹産業から住宅、レジャー 産業まであらゆる分野にまたがり、労働力の不足から各産業分野での省力化、自動化への急速な高まりや公害防止機器の発展普及などによって、需要が急速に拡大し、生産量が飛躍的に増加している。中小形はん用電動機絶縁においても前記高電圧電動機の場合と同じように多くの要求に対し、性能の向上をはかるとともに、標準化を進め高効率の量産方式を採用するなど性能・コスト両面において十分に需要家の要望にこたえることが必要である。

3. 絶縁技術の動向と開発体制

電気機器において絶縁は生命であり、機器の大容量化、高電圧化、 小形軽量化、信頼性の向上などの要求にともなって、絶縁技術の研 究開発、改善には不断の努力がなされている。

機器の絶縁はその構成する材料自身の特性・性能がすぐれている ことはもちろんであるが、材料の有する特性を十分に発揮し絶縁 シ ステムとしてすぐれたものでなければならない。そのためには材料の 適切な組合せ、加工、絶縁処理 つロセス、作業性さらには工場におけ る生産設備とマッチングすることなどが重要である。はん用電動機に おけるマグネットワイヤと絶縁処理 ワニスとの組合せ、自動巻線機の加 工に対する材料の適合性などその一例である。

絶縁システムの開発にあたっては、機器の特性、使用条件、据付環境など機器からのニーズを十分には(把)握し、それにもとづいて使用する材料の開発、評価選択からその加工、処理プロセスの検討をへてモデルコイルによる試作・試験・評価をおこない、さらに実機もしくは実機モデルにおける試作・試験・評価など一貫した開発体系のもとに、それぞれの開発段階で十分に信頼性を確認し疑問点は究明し、基礎からデータを積み上げ、地道に研究開発をすすめていく必要がある。

回転機絶縁技術の現状と開発の状況については本誌各論で機種別に掲載したので、ととでは代表的な大容量、高電圧発電機絶縁と中小形はん用電動機絶縁について、主要な開発項目と開発体制について概要をのべる。

表 1. 回転機絶縁の開発項目

	高電圧発電機絶縁	中小形はん用電動機絶技
1	エボキシレジンならびにマイカ関連 材料の開発とその加工法	マグネットワイヤならびに含浸り = ス材料の開発とその加工法
2	絶縁プロセスと製造技術	
3	絶縁組造の試作ならびに超気的,機 被的,熱的強度の解析と評価	左におなじ
4	実機モデルの試作, 試験と評価	左におなじ
5	絶縁破壊、絶縁劣化機構の研究	絶縁劣化評価試験法の研究
6	データの統計的解析と寿命予測法の 研究	左におなじ
7	世界緩和法	-

表 1. に高電圧発電機絶縁と中小形はん用電動機絶縁の主要な開 発項目を示す。

開発の実施にあたっては、当社生産技術研究所が開発プロジェクトの核となり広い分野の技術力を集めて、新時代の要求にとたえる絶縁システムの開発を推進している。絶縁材料ならびに加工法の開発、機械強度の解析評価、絶縁破壊や絶縁劣化機構の研究、電算機利用のデータファイルや統計解析さらには絶縁寿命予測法などについては、当社中央研究所の基礎研究グループの協力を得ており、また材料の開発については必要に応じ材料メーカなど関係各社の協力を得るなど、広はんな分野の技術力を凝集し高度化することによって、総合効果を高めている。とくに重要である絶縁プロセスと製造技術、コイルの試作評価、実機モデルの試作、信頼性評価などについては、工場ならびに研究所の技術者が相互に駐在するなど一体となって開発をすすめ、機器の設計、製作と直結してすぐれた製品をつくり出し、需要家の要望にこたえるよう努めている。

4. 明日への課題

社会環境, 産業技術の高次元化の傾向に関して, 絶縁技術に期待

されるところは大きく、今後解決すべき問題も多い。

最後に絶縁技術の明日への課題についてのべる。

(1) 機器の高出力化, 高効率化に対処して

(a) 強じんでち密な絶縁組織の開発と必要最小厚さの絶縁組織 の確立

新しい絶縁組織の開発とともに長期劣化、とくに機械的信頼性に 対する評価データの蓄積と活用が課題である。

(b) 熱伝導のすぐれた絶縁材料への期待

新しい無機質の絶縁材料、有機と無機の結合体などが新しい絶縁 材料として期待されるであろう。

- (2) 公害防止・安全など社会環境の向上と省資源化に対処して 絶縁のこれの無溶剤化、水溶化、粉体、プリプレヴなど乾式絶縁処理 化、光、放射線などを利用した新しい重合方法など新しい材料から プロセスにわたっての開発がすでに進められており、遠からず実用化 にはいるものと思われる。
 - (3) 労働人口の減少に対処して

絶縁作業は概して労働集約的な作業が多く、その脱皮が望まれている。まず第一段階として熟練作業者の不足に対して、手作業の機械化により品質の安定化と省力化をはかり、さらに自動化の可能な全く新しい絶縁組織、絶縁プロセスの出現について努力を重ねるべきである。

5. to t 0

以上、回転機絶緑技術の開発の動向と開発体制についてのべた。 絶縁組織の開発は機器からのニーズを十分には握したうえで、材料、 プロセスの検討から モデルコイル による試作、評価、 さらに実機もしく は実機モデル における 信頼性の確認とともに、製造工場における作 業性、生産設備とのマッチングなど広く システムとしてとらえることが 肝要である。実施にあたっては、基礎研究部門から機器の設計、製 造部門にいたるそれぞれ専門分野の技術力を結集し、不断の努力に よりデータを積み重ね、広い底面の上に立つ高い技術を開発してい く必要がある。

新高圧発電機エポキシ絶縁

柴山 恭一*·平林 庄司**·川 上 剛** 松田 禎夫*·磯間 信也*·神野 忠和*·伊藤昭八郎**

New Epoxy Insulation for High Voltage Generators

Manufacturing Development Laboratory Kyôichi Shibayama • Syoji Hirabayashi • Takeshi Kawakami Kobe Works Sadao Matsuda • Shinya Isoma • Tadakazu Jinno Nagasaki Works Syôhachiro Itô

Remarkable is the increase in the single unit capacity of generator in the latest industry. High voltage insulation of large generator is demanded to be highly reliable. To meet the requirement, DIALASTIC insulation made out of solventless type thermosetting resin was for the first time put into practical use in 1954. Since this success in the performance better than asphalt insulation, much improvement has been achieved. Now new epoxy resin insulation has been developed as the application of reconstituted mica based on the epoxy resin impregnation. This insulation system has heat resistance of class F (155°C) and is excellent in the mechanical and electrical characteristics and the thermal cycle. It is especially suitable to superlarge machines and generator-motor. Herein are introduced the characteristics of the resin and the performance of coils in reference to the result of their evaluation test.

1. まえがき

高圧大容量の発電機等回転機のコイル絶縁は、機器の性能、寿命を支配するものであるといわれている。ことに最近の単機容量の増大、および電圧の上昇により、起動停止の繰返しに対する ヒートサイクル性、温度上昇による熱劣化性、振動・短絡に対する機械的特性に対して、長期間にわたり信頼性の高い絶縁方式が要求されている。これらの要請に対し、当社は昭和29年、国内最初の発電機高圧固定子コイルの熱硬化性合成レジン絶縁として、ダイヤラスチック絶縁(三菱電機の高圧コイル絶縁の商品名)を開発し製品化に成功した(1)。以来、約19年間、ダイヤラスチック絶縁により製作された発電機は、10MVA以上のものだけで約420台、総容量40,000MVAに達するが、現在にいたるまで絶縁性能に起因した事故は皆無という実績をもっている。

ちなみに、このダイヤラスチック 絶縁は、米国ウエスティングハウス 社の基本特許をもとに開発し、独自の改良を加えたものであり、世界各国において、この系統の絶縁方式により製造された発電機は、1973 年において総容量 250,000 MVA をこえ、世界発電設備容量の約20%を占めており、最も信頼性の高い絶縁方式として確固たる地位を築いている。

ダイヤラスチック 絶縁は、 開発以来、幾多の改良が加えられ信頼性を高めてきたが、このたび、ヒートサイクル性、機械的、電気的特性の大幅向上、 F種 (155°C) の耐熱性を目指して、含浸用レジンのエポキシ化を中心に、マイカ等の構成材料、ボンドおよび工作法の研究を続け、新しいエポキシ 絶縁(以下このエポキシレジンを使用した新しいダイヤラスチック 絶縁を単に「エポキシ 絶縁」とよぶ)の開発に成功した。 ここでは新たに開発、実用化したエポキシ 絶縁 コイル についてその性能を紹介し、参考に供したいと考える。

2. 含浸用レジン

その後、エポキシレジンの機械的、電気的な優秀さに着限し、レジンの主鎖にエポキシ 骨格を組み入れたエポキシ変性ポリエステルレジンを開発し、昭和38年より実用に供してきた。 とのレジンはエポキシレジンの強じん(靱)さと、不飽和ポリエステルレジンの可とう性、 含浸の容易さを調和させたすぐれた含浸レジンである。

しかし、機械的・電気的な特性を向上させて信頼性をさらに高め、併せて、F種機にも使用できる耐熱性と、高温におけるすぐれた特性をもった絶縁方式を開発するため、新しい含浸用 レジン の研究を進め、不飽和 ポリエステル に匹敵する粘度と柔軟性をもち、しかもエポキシ 本来のすぐれた諸特性をもった新しい エポキシレジン の 開発に成功した。

一般に エポキシレジン はかたくてもろいと考えられているが、 最近の合成樹脂化学の発達により多種多様な エポキシレジンと 硬化剤 が 開発され、その組合せにより、固いもの、軟いもの、もろいもの、ねばりのあるものが任意に得られるようになってきた。しかし一般には、柔軟なものは電気特性がよくないため、高圧機器用として電気特性を犠牲にすることなく、いかにして十分な可とう性をもたせるかという点に苦心を要する。

新しく実用化に成功した エポキシレジン (以下単に「エポキシレジン」とよぶ) は上記の点に十分留意して開発された特殊な エポキシレジン である。レジン の主要な特性は表 1. に示すとおりであり、従来の ダイヤレジン の特長であるすぐれた電気特性、 柔軟性をほとんど損なわず、しかも機械的強度が高く、 熱安定性にすぐれている。 また B 種 (130°C) レジン として長年実績のある ダイヤレジン と比較すると、25°C 高い温度でこれに匹敵する特性をもっており、 F 種 (155°C) レジンとしても十分使用できると考えられる。 図 1. は レジンの 弾性率であり、高温において十分柔軟となり、ヒートサイクル などによる変位に容易に追随しうることがわかる。 また、図 2. に示すように高温時においても接着強度が非常に大きいという特長をもっている。

3. 主絶縁構成および製造プロセス

コイル 素線は、ガラス 被覆線を用い、素線固め絶縁は、 銅の線膨張

表 1. 硬 化 レジュの 特 性 Characteristics of cured resins.

		ダイヤレジン	エポキシレジン
	常温	450	600
抗 張 力 (kg/cm ²)	100°C	50	220
	125°C	20	140
	常温	4	3
伸 び (%)	100°C	70 以上	70 以上
	125°C	70 以上	70 以上
加熱減量 (%)	175°C	11	2.6
[1,000 h 後]	200°C	15	4.5
耐衝擊性 (kg·cm/cm²)	常温	3	3
[シャルピー法 (ノッチあり)]	125°C	10 以上	10 以上
誘電正接 (%)	100°C	0.4	0.4
[tan δ]	125°C	0.5	1.5
務 電 率	100°C	3.5	3.5
[ε]	125°C	3.5	3.6
絶縁抵抗 (Ω cm)	100°C	1×1010	1.5×1015
[p]	125°C	4×1014	3×1014

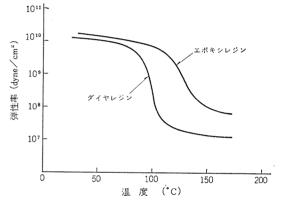


図 1. 硬 化レジンの 弾 性 率 Elastic modulus of cured resins.

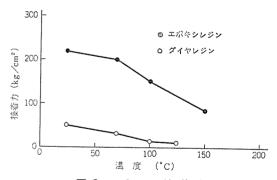


図 2. レジッの 接 着 力 Adhesive strength of resins.

係数に近く、しかも熱的に十分なる特性を有する接着力のすぐれた特殊な絶縁物を用いて、ヒートサイクル時の熱応力ならびに熱劣化・電気的劣化に優れた構成を採用している。 主絶縁壁に用いるマイカテープは機械的に十分な強さをもつことはもちろん、巻付け作業が容易で、導体によく密着するしなやかさをもつ必要がある。このためマイカテープ用ボンドとして、上記の要請を満足しかつまた、 含浸された レジンと反応し一体の三次元的網目構造の共重合体をつくる 反応性のよい エボキシ 樹脂 ボンド を新しく開発し、長年実績のある大形マイカ 片からなる マイカテープと マイカ 層の均質性を高めた 集成 マイカはく(箔)よりなる テープと含浸 エポキシレジン が一体になるように製作されている。

一方、品質のよい製品はすぐれた材料のみでなく、最も適した製

造 プロセス 技術が必要である。 新開発の エポキシ 絶縁に関しても、約1,000 本を超える テストバー および実物 コイル でもって、エポキシレジン に対する最適 プロセス 条件を決定しているが、 エポキシレジン の粘度が 低く含浸が容易であるため、長年経験を積んできた ダイヤレジン の プロセス と基本的には同じ プロセス で固定子 コイル を製作することができるので、非常に安定した品質の コイル が得られる。

4. コイル絶縁の特性

高圧発電機の固定子 コイル 絶縁には多くの絶縁性能が要求されるが次に示すものは最も基本的なものである。

- (1) 破壊電圧値が高い。
- (2) 印加電圧および温度の広い範囲で tan δ 値が小さい。
- (3) 機械的に強じんである。
- (4) 耐熱性が高く連続加熱下で耐圧値, tan δ, 絶縁寸法の変化が少ない。
- (5) 連続課電と繰返し機械的応力に対し絶縁の疲労劣化が小さい。

これらの特性を満足する性能を得るため、13種の エポキシ 含浸樹脂と 50種以上の マイカテープを種々組み合せて 約3,500本の テストバーを製作し、新しく開発した電算機による信頼性解析手法を導入して解析・評価した結果、この基本特性を満足する新しい絶縁方式が得られた。一般に コイル 絶縁の性能評価はその寿命により決定されるものであるが、実際には短期間でその寿命の絶対値を求めることは困難であるため、熱的、電気的、機械的な初期待性やそれらの劣化特性ならびに、実際の運転状態を模擬した総合的な機能試験を行なって、従来の長い実績をもっている。以下、コイルの主要な特性について評価結果の概要をのべる。

4.1 誘電正接特性 (tan δ 特性)

図 3. は 16.5 kV 定格 コイルの Δtan δ (16.5 kV—2 kV) 特性の一例を示したものである。従来の ダイヤラスチック 絶縁の場合でも,レジンの含浸性がよく,高度の真空含浸技術とあいまって良好な特性を示しているが,エポキシ 絶縁の場合,さらに良好な特性を示しており,常規電圧(運転状態での最高電圧)では tan δ 値の増加が見られず,絶縁層内部での ボイド がほとんどないことを示している。 これらはエポキシレジンの優れた接着力, ならびに均質な集成 マイカテープ の使用によるもので,このため Δtan δ 特性の パラッキ も少なく安定した特性が得られている。

図 4. は $\tan \delta$ 温度特性の一例を示したものである。 $\pi \pi^{\dagger} + 3 \cup 1 = 0$ イルの $\tan \delta$ 温度特性は,不飽和 $\pi^{\dagger} + 3 \cup 1 = 0$ が一般的な傾向である。新開発の $\pi^{\dagger} + 3 \cup 1 = 0$ 絶縁は特殊な触媒の開発により,優れた温度特性を示した従来の ダイヤレジン 絶縁よりも

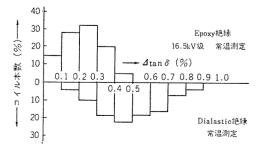


図 3. ⊿tan δ 特 性 ⊿tan δ characteristics of coils.

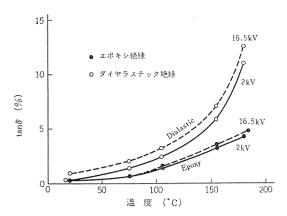


図 4. Tan δ 温度特性 Tan δ-temperature characteristics of co.ls.

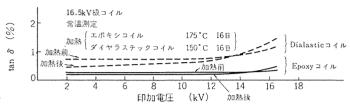


図 5. Tan 8 の 熱 劣 化 特 性 Change in tan 8-voltage characteristics due to thermal aging.

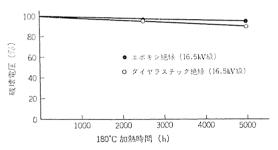


図 6. 熱劣化による破壊電圧特性変化 Change in breakdown voltage during thermal aging of test bars.

高温でさらに小さい値を示し、しかも電圧特性も安定な優れた特性 を示している。

4.2 熱劣化特性

図 5. は 16.5 kV 級 コイルの 150°C および 175°C 16 日間強制加熱 劣化試験による tan δ-電圧特性の変化を示す。 ダイヤラスチック 絶縁 の 劣化も小さいが,エポキシ 絶縁は劣化温度がそれよりも 25°C 高いにもかかわらず劣化の度合はさらに小さく熱的に非常に安定であることを示している。図 6. は 180°C, 5,000 時間の強制加熱劣化試験を行ない,破壊電圧の低下度合を評価した結果を示したものである。相当に過酷な加速劣化試験であるにもかかわらず, ダイヤラスチック 絶縁は約 10 %の低下しか示さず,エポキシ 絶縁の破壊電圧の 低下度は さらにそれよりも少なく熱的に非常に信頼性の高い絶縁方式であるといえる。

4.3 課電寿命特性

発電機が高電圧・大容量になると、技術的、経済的な意味からも単位厚さの破壊電圧の高い絶縁が要求されてくる。しかしただ単に短時間での試験で高い値を示すというだけでなく、実際に必要なことは長時間の使用電圧において絶対に破壊しないということである。これらの確認のため図 7. に示すように、テストコイルにより長時間の課電寿命試験を実施している。図 8. は、約4 mm の絶縁をほどこした テストバーの課電寿命特性の結果を示したものである。はがしっ

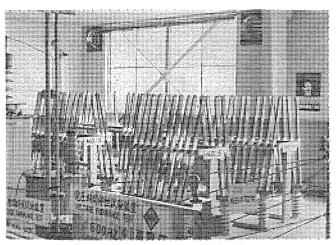


図 7. テストバーによる課電寿命試験 Voltage endurance test of insulation test bars.

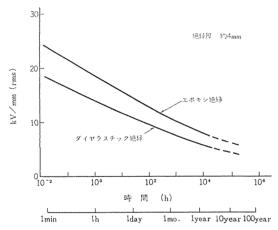


図 8. テストパーに よる 課 電寿 命 特 性 Voltage endurance characteristics of insulation test bars

イカを用いている ダイヤラスチック 絶縁の短時間耐電圧特性にくらべ、 エポキシ 絶縁は集成 マイカ の適用により約 130 % に向上している。また長時間寿命特性も常規運転電界における寿命は、 従来の ダイヤラス チック 絶縁でもなんら問題はないが、エポキシ 絶縁では運転電界に対する寿命の余裕が大きく、さらに信頼性が高くなっている。

4. 4 機械的特性

発電機の大形化に伴って機械的特性をは握することの重要性がさらに高まっている。回転機絶縁を構成する材料の引張り強さ、たて弾性率、伸び、せん断強さ、横弾性率、へき開強さ、ならびに疲れ強さなどの機械的性質についてのは握はもちろんのこと、回転機コイルの機械的強度を定量的に評価するため、コイル絶縁物の力の伝達機構の解明(3) および短絡時に発生する応力とその強度に対する検討など総合的な解明を行なっている。これら機械的特性に関する当社の考え方や評価の内容については、別稿にのべられるので、ここではモデルコイルによる評価の一端を紹介する。

図 9. は 16.5 kV 級 モデルコイル に 4 点荷重の曲げ荷重をかけながらそのときの tan δ 特性などの電気測定を行ない,機械的応力と電気特性との関連を検討しているところを示したものである。モデルコイルの曲げ モーメット と絶縁物表面のひずみとの関係を 図 10. に示す。同じ二重 ガラス 巻絶縁素線導体をもつコイル であるが,エポキシ 絶縁 コイル は ダイヤラスチック 絶縁より も高い荷重に耐える。ダイヤラスチック 絶縁では,曲げ荷重を加えていくと ⊿tan δ 値が次第に増加する。 しか

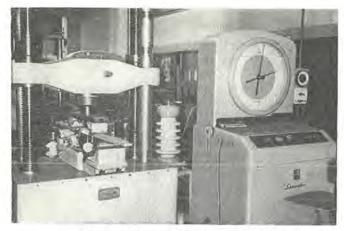


図 9. 機械特性と電気特性との関連性の検討 Examination on relationship between mechanical and electrical characteristics.

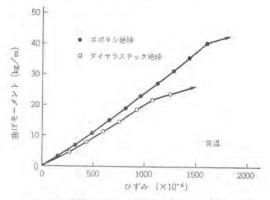


図 10. 絶縁 コイル の曲げ モーメント 一ひずみ特性 Change in mechanical strain to bending moment of coils.

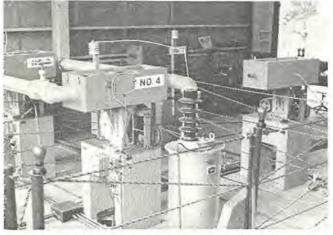


図 11. モデルコイルの 繰 返 し 疲 労 試 験 Examination on insulation fatigue strength of model coils.

し、絶縁物に破壊が生じない範囲であれば荷重を除くともとの状態に回復する。一方、エポキシ 絶縁では素線に降状が生じない範囲での曲げ モーメント を加えても $\tan\delta$ 特性は変化しない $^{(2)}$ 。

これらの特性はダイヤラスチック 絶縁・エポキシ 絶縁の特色をよくあらわしており、前者ははがしマイカによる積層弾性構造、後者はレジンの接着力が強いために高い曲げ荷重にまでコイル素線と絶縁物が一体剛構造になっているためと考えられる。とくにエポキシ 絶縁では機械的な応力一ひずみ特性において、線形関係からはずれて導体の降伏点付近の過大な曲げモーメント に対しても電気特性が十分維持され

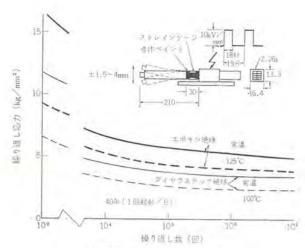


図 12. 曲 げ 疲 労 特 性 Mechanical fatigue strength of test coils.

ており、非常に信頼性の高い絶縁方式であるといえよう。

図 11. は絶縁 コイル の機械的な振動による長期間の繰返し疲労を 評価しているところを示したもので、図 12. にその方法および結果 の一例を示している。 コイル を片持ばりとして支持し、コイル 絶縁に 種々の大きさの両振りの繰返し定変位を加えて、初期破壊電界の約 1/2 に相当する チェック 電圧を印加して破壊した点を寿命とした、い わゆる S-N 曲線である。

工ポキシ 絶縁は、機械的特性のすぐれたエポキシレジンの効果によって、高温においても高い機械的疲労特性を示しており、系統事故時などに発生する過大な異常応力に対しても、また、発電電動機の起動時などにおける大きな繰返し応力に対しても、長年実績のある ダイヤラスチック 絶縁の約 2 倍の応力を 25°C 高い運転温度においても 保持し得ることから、 発電電動機の下種絶縁 コイル としても十分の耐力を持っているということができる。

5. 総合機能評価試験

以上のべたように熱的、電気的、機械的な劣化要因に対して長年の実績をもつ ダイヤラスチック 絶縁にまさるものであることが確認されたが、近年の機器の大形化の急激な進展、起動停止がひんばんに行なわれる揚水発電電動機や、せん頭負荷用発電機の増大に伴い ヒートサイクル 特性の検討が必要になってきた。

当社においても電気的、熱的な劣化のは握のみならず ヒートサイクル における繰返し熱応力を受けるような、実際の運転状態を模擬した総合的な ヒートサイクル 試験を昭和 36 年より実施し⁽⁴⁾、各種の絶縁方式の判定基準の一つと考えてきた。今回も エポキシ 絶縁の信頼性を確認するため総合機能評価試験を実施した。

総合機能試験装置のブロック図を図 13. に示し、その試験モデルを図 14. に示す。この試験モデルは 100 MVA 相当の水車発電機固定子1 セクタで、コア長 1.8 m、13 スロットに 16.5 kV 級の実物コイルを組込み、実際の場合の 2 倍の電流密度に相当する直流電流を通電して導体を加熱するとともに、コアには鉄損に相当する温度上昇を与える。設定した温度・時間になれば電流をしゃ断し、冷却風で強制冷却すると共にコアに冷却水を通して急激に冷却する。一方、コイルには常規運転電圧の約 1.7 倍に相当する電圧を連続的に印加し、電気的・熱的・サーマルストレスによる機械的応力を与えている。これら加熱冷却のスケジュールでは、時間に対する温度の変化は実際の機械が遭遇する条件にくらべて非常にきびしいものである。

表 2. 総 合 機 能 評 価 試 験 結 果 Electrical properties of thermal cycling evaluation test.

試験				***************************************	試	験	条 作		試 驗	結 果
No.	記号	趙 縁 方 式	導	体 温	度	ヒートサイクル	ヒートサイクル	印加電圧		耐 電 圧 年 次 低 下 率
110.			T max	T min	ΔT	(サイクル)	時間	(rms)	後の低下度(%)	年(%/年)
	С	アスファルト コンパウンド	120°C	50°C	70°C	0~230	4 h/cycle		33	2.0~2.5(6)
	PI	ダイヤラスチック絶縁 I	135°C	50°C	85°C	231~3,100	(HEAT 3 h	14 kV	20	1.2~1.5
2	ΡI	ダイヤラスチック絶縁 I	160°C 180°C	60°C	100°C	0~3,000	80 min/cycle	14.5135	40	1.2~1.5
	PΠ	ダイヤラスチック絶縁 Ⅱ	200°C	60°C	140°C	3,001~4,000 4,001~5,000	(HEAT 50 min COOL 30 min	16.5 kV	24	0.7~0.9
3	P II	ダイヤラスチック絶縁 II	160°C	60°C	100°C	0~1,000	80 min/cycle		12	0.7~0.9
3	E	エポキシ	180°C 200°C	60°C	120°C 140°C	1,001~2,000 2,001~3,000	(HEAT 50 min COOL 30 min	16.5 kV	0.8	<0.1

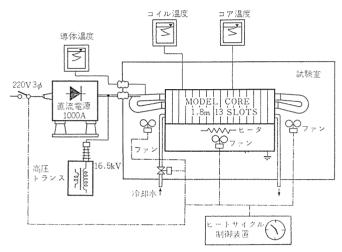


図 13. 絶縁 機能評価試験装置のブロック図 Block diagram of thermal cycling test equipment for water wheel generator insulation.

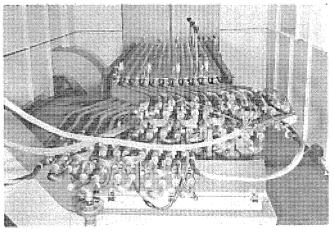


図 14. 絶縁機能試験モデル Thermal cycling test equipment.

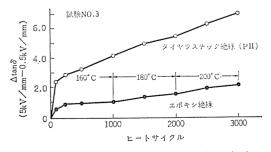


図 15. ヒートサイクルに よる ⊿tan δの変化 Change in ⊿tan δ during thermal cycling.

これら総合機能試験で実施した絶縁方式, 試験条件および試験結果を表 2. に示す。

試験1はアスファルトコンパウンド方式とダイヤラスチック 絶縁方式との比較を目的として,ヒートサイクル温度を最高 135℃ に設定して 3,120 サイクル 実施したもので,アスファルトコンパウンド 絶縁方式にくらべ ダイヤラスチック 絶縁が,これら総合的な劣化に対して信頼性の高い絶縁方式であることが確認された⁽⁵⁾。

試験 2 および試験 3 は、改良された ダイヤラスチック 絶縁(記号 PII) および ェポキシ 絶縁の信頼性を確認するため行なったもの で、 当初 160°C、3,000 サイクル 実施後一部の コイル の破壊試験を実施したところ、破壊電圧の低下が認められなかったため、最高 200°C までの試験を行なったものである。ヒートサイクル による非破壊特性の一例を図 15. に示している。非常に過酷な試験条件にもかかわらず比較的安定な電気特性を維持している。

アスファルト コンパウンド 絶縁の実用運転における耐電圧の 年次低下率は、統計的に 2.0~2.5 %と報告されている (6)。 この値から、 ダイヤラスチック 絶縁、 (PII) および エポキシ 絶縁の年次低下率を算出すると、前者が 0.7~0.9 %、後者が 0.1 % 以下で経年に対する耐電圧値の低下度は非常に少なく、とくにエポキシ 絶縁の場合は信頼性の高い絶縁方式であるといえよう。

アスファルト コンパウンド 絶縁の場合,ヒートサイクル の繰返しにより, girth crack (絶縁層のくびれ)や、テープはく離による事故が過去に 経験されている。しかし、合成樹脂系のレジンが使用されるように なってから、この種の事故はほとんどなくなっている。しかし超大 形機の長大 コイル や超動停止のひんぱんに行なわれる 揚水式発電電 動機に適用される場合、 特にとれらの問題が重要になる。 図 16. は各種絶縁方式の ヒートサイクル による コイル 永久変位の一例であるが, ェポキシ 絶縁,および ダイヤラスチック 絶縁は アスファルト コンパウンド 絶縁の 試験条件よりもはるかに過酷な試験条件であるにもかかわらず永久 変位は少なく, テーープはく離の永久変位がある一定値に達したときに 生じるとすれば、 ダイヤラスチック 絶縁および エポキシ 絶縁はこれら ヒー トサイクル に対して十分な特性を示しているといえよう。また,4.5 m の コアモデル による アスファルト コンパウンド 絶縁の永久変位は,導体温度 に比例して増加するという報告がある^の。当社で得た結果と対比し て 図 17. に示す。 アスファルト コンパウンド 絶縁はほぼ 文献値に似た特 性を示しており, 一方, ダイヤラスチック 絶縁ならび に エポキシ 絶縁は 200℃ になっても永久変位は増加していない。これらの結果から考 え、ダイヤラスチック絶縁ならびにエポキシ絶縁に関しては、girth crack または テープはく離に対して十分なる耐力を有していると考えられ, 超大形機, 発電電動機の コイル として信頼性の高い絶縁方式である

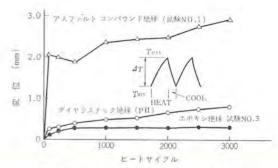


図 16. ヒートサイクルによる変位 Elongation of coil insulation during thermal cycling.

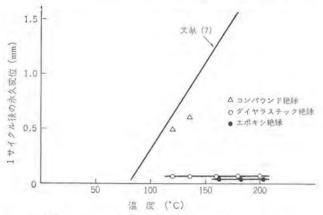


図 17. ヒートサイクル 温度に対する 1 サイクル 後の永久変位 Permanent elongation of coil insulation after one thermal cycling vs. temperature.

といえる。

6. む す び

以上、新しく開発・実用化された エポキシ 絶絶について、 レジャ の 特性、コイル の性能などの試験結果を紹介したが要約すると次のとお りである。

- (1) 長年の無事故の実績を誇る ダイヤラスチック 絶縁の性能と比較して、実用上必要なすべての特性においてすぐれている。
- (2) 耐熱性および高温特性がすぐれており、F種機器にも使用 しうる。
 - (3) 耐電圧が高く、誘電正接特性がすぐれている。
- (4) 機械的特性ならびに疲労特性がすぐれている。とくに高温 における機械的特性がすぐれていることから、長大な大容量 タービン

図 18. 超大形 タービン 発電機 コイル 絶縁機能試験 モデル Thermal cycling test equipment for large turbine generator coils.

発電機用 コイル や過酷な ヒートサイクル の かかる 発電電動機用 コイル に適していると考えられる。

(5) 電気的、熱的、ヒートサイクル 特性を含めた総合的な機能評価 により、過酷なヒートサイクル に対し問題のないことを確認した。

今後さらに続く大容量化の傾向に対して、これらヒートサイクルや機械的特性のは握は重要な問題であるので、現在さらに理論的な解明を進めると共に、図 18. に示すような、コァ長 9 m、定格電圧 28 kV 級の超大形 タービッ発電機絶縁の総合機能試験を進めており、さらに信頼性の高い絶縁方式の確立に努力を続けている。

終わりにあたり、長期にわたって本方式の研究開発にご指導、ご 協力をいただいた関係各位に深く謝意を表する次第である。

参考文献

- (1) 石黒, 伊佐山: 三菱電機, 30, No. 5 (昭31)
- (2) 村上, 二川, 山崎, 川上;第4回電気絶縁材料 シンポジウム・ V-12
- (3) 村上, 二川, 山崎, 川上: 絶縁材料研究会資料, IM-73-37 (昭48)
- (4) 原, 平林, 川上, 水野:三菱電機, 36, No. 2 (昭37)
- (5) 原,川上,松田,伊藤:三菱電機技報,40, No. 11 (昭41)
- (6) 福田: 電学誌, 82, 641 (昭37)
- (7) 松延, 磯部, 岡:電学誌, 92-A, No. 1 (昭 47)

最近の高圧電動機絶縁

平林 庄 司*·林 修*·美 藤 亘* 伊藤 昭八郎**·中 村 陽 一**

New Dia-Epoxy Insulation for Large AC Motors

Manufacturing Development Laboratory

Shôji Hirabayashi • Osamu Hayashi • Wataru Bitô Nagasaki Works Shôhachirô Itô • Yôichi Nakamura

The recent trend in rotating machines is the enlargement of capacity and elevation of heat resistance. Mitsubishi took up in 1966 Dia-Epoxy insulation through the vacuum impregnation processing called post impregnation system by the use of epoxy resin, applying it to high voltage motors of 6.6 kV class. Since then eight years have elapsed. During this duration, further improvement has been made on the resin characteristics under high temperatures and in the impregnation ability. Now a new epoxy resin having excellent characteristics at high temperatures and good heat resistance has been brought to completion. This resin is of low viscosity type even at low temperatures, which provides good impregnation ability and good dielectric characteristics, thus higher reliability being achieved. This means that new Dia-Epoxy insulation has fur more improved performance and will withstand all environmental conditions as high voltage insulation.

1. まえがき

最近の回転機の傾向として大容量化、耐熱性向上が行なわれるようになってきた。当社でも昭和 41 年にエポキシレジンを使用し、全含浸方式と呼ばれる真空含浸処理を行なった ダイヤエポキシ 絶縁(銘板記号 DF)と称する絶縁を、6.6 kV 以下の高圧電動機に適用して8年余り経過した⁽¹⁾。との間、電力・化学・鉄鋼等のあらゆる産業界において使用され、その高性能を十分発揮している。

当社はとのレジンの高温時の特性およびレジンの含浸性等について改良するため、たえず努力を続けてきた結果、高温特性にすぐれ、かつ耐熱性の良好な新ェポキシレジンを完成した。とのレジンの粘度は室温においても低粘度なので、従来のレジンよりも含浸性が優れているため非破壊特性についても良好となり、一層信頼性が向上した。また、全含浸方式におけるコイルスロット部のコロナ防止処理についても改良をすすめ、当社独特の方法で新ダイヤエポキシ絶縁を完成するにいたった。

以上のように新 ダイヤエポキシ 絶縁は従来の ダイヤエポキシ 絶縁 に 比較 し、その性能がさらに向上したものであり、高圧電動機絶縁として あらゆる環境にも耐えるものである。とこにこの絶縁の諸特性につ いて述べご参考に供したい。

2. 絶緣方式

新 ダイヤエポキシ 絶縁は常温での電気的、機械的諸特性および耐水性は言うまでもなく、特に高温時の特性および耐熱性に考慮がはらわれている。全含浸方式にもかかわらず コロナ 防止処理を行うことも可能となっており、絶縁層へのレジンの含浸性の問題となる含浸レジンの粘度は適度に低く、ち(緻)密で耐熱性のすぐれた絶縁組織を形成する。また、素線には耐熱エナメル皮膜をもった二重 ガラス 巻線や耐熱性不織布等の適切な裏張材をもつ集成マイカテープを 巻回したものを使用し、より高い浸入 サージ 電圧についても考慮されている。

従来の絶縁方式は製作プロセス上から述べると コイル に 絶縁 テープを巻回し、コイル 単独で絶縁処理を行なってから鉄心にそう入してい

たが、ダイヤエポキシ 絶縁は、コイル に所定の マイカテープ を巻回し表面の バインドテープ を施した後、レジン 処理を行なわずそのまま鉄心に入れ、結線、 コイルエンド 部の機械的保持などの巻線作業がすべて終了した後に、コイル とコア を同時で含浸 タンク の中に入れ耐熱性のすぐれた低粘度の エポキシレジン を真空含浸する方法で、 これを全含浸方式と称している。 コロナ 防止処理を行なうものについては、 真空含浸処理前に当社独特の方法でこれを行なっている。

本方式によるものは巻線全体が同時に含浸されるので、コイル間の接続部や口出線との接続部等に絶縁の継目がなく、全体が一体化しているので弱点が発生しない。また、コイルとコア間にもレジンが充てん(塡)されるため強固で信頼性の高い絶縁組織が得られる。

このため工場での製作途上、レジンを含浸し重合硬化後、固定子を水中に浸漬し耐電圧試験と絶縁抵抗の チェック を行い異常 が ない ことを確認している。このため全閉形より、開放防滴形や開放形に簡易化していくことも可能であり、かつ、保守のうえからも汚損が著しい場合水洗等を行いそのまま運転することもできる。

3. 含浸レジンの諸特性

3.1 含浸レジンの特性

高圧回転機用の含浸 レジンとして具備すべき条件は数多くある。中でも含浸操作に必要な適当な粘度を有していることである。また、可使時間が長く、硬化後の絶縁層内をボイドフリーにするために、 容易に硬化反応が行なえるような作業性を満足する 無溶剤形の レジンが好ましい。

新含浸 $\nu \tilde{\nu} \nu$ の特性は表 1. に示すものであり、粘度は 20° C で 55 cPs. と低く従来の $\nu \tilde{\nu} \nu$ に比較し含浸性が非常に向上した。 また、完全な無溶剤形 $\pi \tilde{\nu} \nu$ であるため $\pi \tilde{\nu} \nu$ の絶縁組織を形成することが可能である。含浸 $\nu \tilde{\nu} \nu$ の可使時間は室温にて 12 箇月を有している。

3.2 硬化レジンの特性

含浸 レジンの硬化後の特性は絶縁組織としての性能を決定する上で大きな要素を占めている。すなわち絶縁組織として当然必要な電

表 1. 新ダイヤエポキシレジンの 特性 Physical propaties of new Dia-epoxy varnish.

項	目	特 性
色		淡黄かっ色・透り
It :	重 (25°C)	1.075±0.005
粘	度 (20°C) (cPs.)	55
	率 (20/20°C)	1.5±0.05
可使時	間 (月)	12
不 揮 乾	分 (%)	1.00
ゲル化時	III (135°C) (分)	18±1

表 2. 新 ダイヤレジュ (硬 化 後) の 特 性 Physical propaties of a new Dia-epoxy resin after curing.

		頭		H	特	性
此		M			1.18	
抗	亚	カ	(kg/mm ²)	25°C	7.5	
				100°C	2.5	
				120°C	1.0	
伸		DE	(%)	25°C	.3	
				100°C	.3 52	
				120°C	45	
뗈	黎強	度	(アイジットノ	y + 8 h) (25°C) (kg cm/cm2)	6.0	
吸	水	批	(常温水中 30 日	後)(%)	1.3	
諺	恨正	被	(常温 AC 200	V 60 Hz) (%)	0.15	
誘	雅	华	(常温 AC 200	V 60 Hz)	3.6	
体	负抵抗	納	(常温 DC 100	V 1分似) (Ω-cm)	3×1	015
絶	录破塔	の登	iさ (常温) (k'	V/mm)	42	

表 3. 新 ダイヤエポキシ レジン の耐薬品性 (室温 30 日間浸漬後) Chemical resistance of a new Dia-epoxy resin.

	変	(15	10 f		(%)	
選品	W	14	fits	iŤ	強	ż
H ₂ SO ₁ (30 %)	0.20			12	2.3	
HCl (30 %)	0.25			4	5.0	
HNOs (30%)	0,30			10	0.0	
NaOH (30%)	0.20			5	0.9	
NaCl (20 %)	0.30			E	3.6	
1 10 2 2	1.20			1	2.4	
ガッッッ	0.17				5.7	
エクノール	0.10			16	5.6	
R-11	0.13			7	7.0	
R-22	0.50				2.6	

気的、機械的諸特性はもとより、実機運転中の熱膨張係数の差により絶縁材料と導体等の間に非常に大きなストレスが働らき、これによって破壊に至るとか絶縁層間に えレ を生じ空げき(隙)が発生し、この部分から電気的に劣化されるという原因を生じないよう導体等との接着強度が大で、しかも膨張、収縮に対して十分付随できる絶縁特性、いわゆる ダイヤラスチック 絶縁を形成するものでなければならない(2)。 新 エポキシレジン はこれらの諸特性に対し十分満足できるものであり、温度特性・耐熱性等が特に改良されたものである。この エポキシレジン を硬化した場合の特性を表 2. に示す。

次に硬化レジンの耐薬品性、機械的強度の温度特性について述べる。耐薬品性試験としてレジン板を濃度30%の酸、アルカリ、および20%の塩化ナトリウム水溶液に室温にて30日間浸漬し重量変化と曲げ強度の変化を求めた。トルエン、エタノールなどの耐溶剤性および R-11, R-22 などの耐フレオン性も同様にして求めた。その結果を表3.に示す。耐薬品性に関しては問題ないと考えられる。試験を行なった薬品に対して若干軟化する傾向を示し浸漬後、曲げ強さが強くなっている。

硬化 レジン の温度特性としては絶縁破壊電圧、 粘弾性、接着力等 について試験を行った。 その結果を図 1. から図 3. までに示す。 抗張力および伸びの温度特性については表 2. に示している。 破壊 電圧に関しては 180°C においてもその低下率は初期値の 90% を保

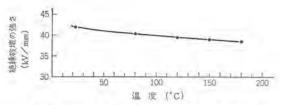


図 1. 硬化レジンの 破壊 電圧温度特性 Breakdown strength vs. temperature curve of new Dia-epoxy resin,

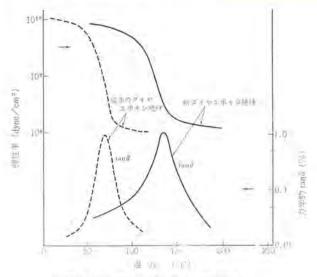


図 2. 粘 彈 性-温 度 分 散 曲 線 Viscoelastic modulus vs. temperature curves of Dia-epoxy resins.

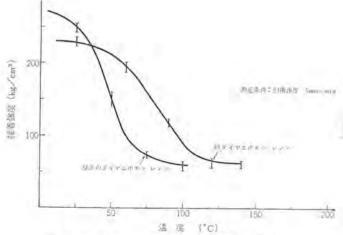


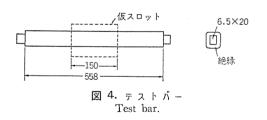
図 3. 接 着 強 度-温 度 特 性 (Fe-Fe But 法) Adhesive strength (Fe-Fe) curves of Dia-epoxy resin as a function of temperature.

持しており、高温時の特性が非常にすぐれていることがわかる。

ダイヤラスチック 絶縁の特性を決める重要な因子は温度による 弾性率の変化および接着力の変化等である。 弾性率と力学的 $\tan\delta$ の温度特性を図 2. に示している。 これより従来の ダイヤエポキシレジンの T_g (熱変形点) は約 70° C であるのに対し新 ダイヤエポキシレジンの T_g は 135° C 程度で高くなっているが、弾性率の変化の度合いは同程度であり高温での弾性率はどちらもほぼ同じである。また接着強度の変化は 図 3. に示しているが高温では新 レジン の方が強いことがわかる。

4. 絶縁組織の諸特性

4.1 耐電圧


固体絶縁組織は初期破壊電界が高いにもかかわらず絶縁設計を行 なうさい、運転時の電界はこれをはるかに下まわって設定される。 これは他の気体絶縁物や液体絶縁物に比較して、固体絶縁物の劣化 の程度が大きいことに起因するものであり,このため新絶縁物の実 機適用にあたっては長期寿命試験を行ないその寿命を確認しておく 必要がある。この試験法としては、種々のものが提案され実施され ているが、電圧耐久特性、いわゆる V-t 特性試験は中でも基本的 なものの一つであり、ここでも従来のダイヤエポキシ絶縁と新ダイヤエポ +シ 絶縁について試験を行なった(3)。 試料は表 4. に示す絶縁組織 を図 4. に示す テストハ- に巻回し AC 60 Hz, 3 段階の 電圧で 寿命 時間を測定した。 なお一測定点に対する試料数は 10 本である。 測 定した寿命時間を ワイブル 確率紙上に プロット し, いずれも 摩耗劣化 の $パ_{S-v}$ であることを確認し V-t 寿命特性を求めた。この結果を 片対数表示法により図 5. に示す。これより従来の ダイヤエポキシ 絶縁 に比し優るとも劣らないものであり、通常の運転電界では、 新 ダイ ヤエポキシ 絶縁は十分な寿命をもっているといえる。

4.2 温度特性, 耐熱性

絶縁の特性を評価するさい,通常は常温において行なわれるが,むしろ運転時の温度での特性が問題である。このため高温での特性 評価を行い確認をしておく必要がある。新ダイヤエポキシ絶縁は,従来 の絶縁に比較し,この高温での各種特性が特に改善されている。そ の一例として δ_0 -温度特性を図 δ_0 -、絶縁抵抗-温度特性を図 δ_0

表 4. 絶 縁 組 織 Constituent of insulation systems.

システム	絶縁テープ名	スロット部 放電防止	含没レジン
A	はがしマイカ	なし	従来のダイヤ エポキシレジン
В	はが しマイカ	なし	新ダイヤエポキシ レジン
С	はがしマイカ	あり	新ダイヤエポキシ レジン

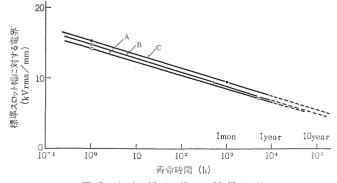


図 5. 各 絶 縁 組 織 の V-T 特 性 Voltage endurance curves of new Dia-epoxy insulation systems.

に示す。とれは 6 kV 級の絶縁について求めたもので、tan δ は AC 2 kV での tan δ 値を装わす。 これより明らかなように tan δ に関してははがし マイカ を用いたものは、155°C で約 6 %、180°C で9 %程度であり、集成 マイカ を用いると 180°C でも 2 %程度である。また、絶縁抵抗の半減温度は約 16°C であり、非常にすぐれた温度特性を有する絶縁組織であることがわかる。破壊電圧の温度特性についても同様に良好で、室温より 155°C の範囲ではその低下率はほとんど零であることが確認されている。

次に新ダイヤエポキシ 絶縁の耐熱性を評価するために 160°C, 180°C, 200°C の 3 点の温度で加熱劣化させ重量減少を求めた。 ここでは新ダイヤエポキシ 絶縁の耐熱性を実績の ある 従来 のダイヤエポキシ 絶縁と相対比較する意味で、加熱 30 日間までの重量減少を図 8. に示している。 新ダイヤエポキシ 絶縁は下種として実績のある 従来 のダイヤエポキシ 絶縁よりも耐熱性がすぐれており、 これらを考慮すると新ダイヤエポキシ 絶縁は下種であると判断できる。

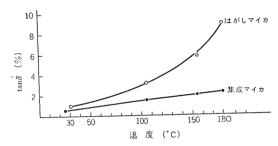


図 6. $\tan \delta$ — 温 度 特 性 Dissipation factor vs. temperature curve's of new Dia-epoxy insulation.

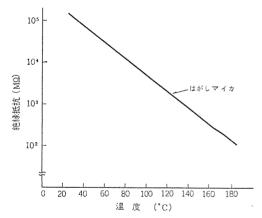


図 7. 絶 縁 抵 抗 - 温 度 特 性 Insulation resistance vs. temperature curve of new Dia-epoxy insulation.

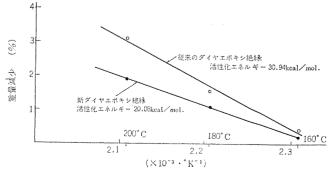


図 8. 熱劣化 30 日後の重量減少 - 1/T 曲線 Weight loss vs. temperature characteristics for Dia-epoxy resins after thermal aging.

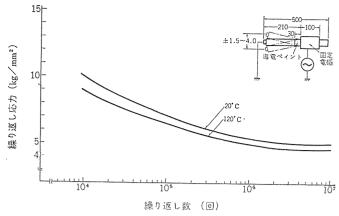


図 9. 曲 げ 疲 労 特 性 Mechanical fatigue characteristics of new Dia-epoxy insulation.

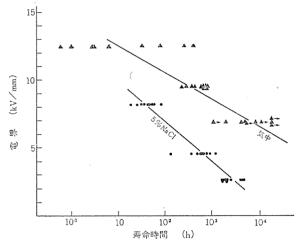


図 10. コイルエンド 絶 縁 の V-T 特 性 Voltage endurance characteristics of coil and insulation immersed in 5% NaCl water solution.

4.3 機械的特性

誘導電動機はその使用目的から起動停止がひんぱんであり、このため起動電流による電磁力により コイル に過大な力がはたらき コイルを変形させる。また運転中の振動により長期間にわたるくり返し疲労が コイル に加わる。 このため コイル は鉄心部においては スロット内 詰物やくさびにより拘束され、 コイルエンド 部は適切な 支持法により 固定される。しかし絶縁の機械的強度が十分でないとその効果は発揮できない。

筆者らは絶縁の機械的疲労特性をは(把)握するため,片持ちばり方法で, 先端に $\pm 1.5 \sim \pm 4$ mm の両振りの振幅を与え 30 サイクル/砂で振動させ 10^7 回までのくり返し疲労特性を求めた。破壊時点の判定として 10 kV/mm の 電界を 15 分間隔に 18 秒印加した。 これは V-t 効果の影響を少なくするため課電時間を機械的評価試験時間の 1/50 としたものである。結果を図 9. に示す。 1/1 ル の絶縁組織にかかる力は十分な安全率をもって設計されており,実績のある従来のダイヤエポキシ 絶縁と比較しても何らそん色はなく実用に十分耐えるものである。

4.4 耐水性,耐薬品性

回転機巻線の絶縁組織にとって耐湿性・耐薬品性は重要なものであり、機器の性能を左右するばかりでなく保守のうえからも不可欠なものである。絶縁物が吸湿することにより絶縁抵抗が低下したり、使用される環境によっては導電性のじんあいがコイルに付着し絶縁

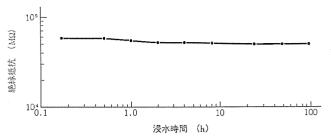


図 11. 固定子巻線の浸水試験による絶縁抵抗の変化 Change in resistance of coil insulation after immersion.

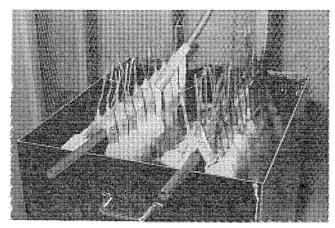


図 12. コイルの 水中浸漬 試験 Water immersion test of coils.



図 13. 固定子巻線の水中浸漬試験 Water immersion test of windings.

層内に浸漬し絶縁物の劣化を促進する。また化学会社等のように機器が直接薬品の影響を受ける場合もある。このため巻線全体の信頼性が保障されなければならない。

新 ダイヤエポキシ 絶縁についてこれらの評価を行なった。評価にあたってはこれを加速するため 5% NaCl 水溶液の中に絶縁 371 を浸漬し交流電界を印加する方法を採用した40。この水溶液中のV-t 曲線を求め気中のそれと比較した。ここで気中と記したものは 371 ご 部も含め全周に導電性 371 を塗布し,気中で試験を行なったもので結果を図 371 に示す。371 NaCl 水溶液中での特性は気中のものとほぼ 371 しているものとみられるので劣化機構は 301 労化と同様のものであると思われる。また,実機固定子を水道水中に浸漬し絶縁抵抗と浸漬時間の関係を求めたが 371 にとれらの試験状況である。 耐薬品性に関しては371 で 371 で 月 い,これに所定の絶縁を施した後,371 2 節で述べた薬品の濃度を 371 に

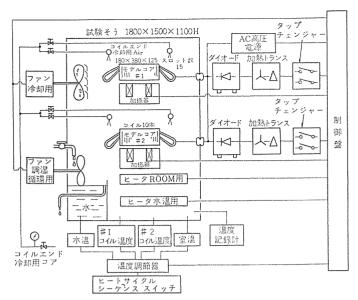


図 14. 電動機絶縁機能試験装置の ブロック 図 Block diagram of functional test equipment of insulation.

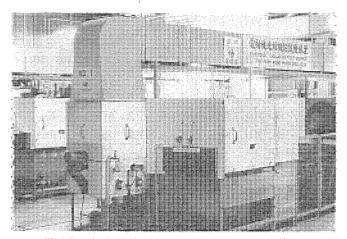


図 15. 電 動 機 絶 縁 の 機 能 評 価 試 験 装 置 Functional evaluation test equipment for motor insulation.

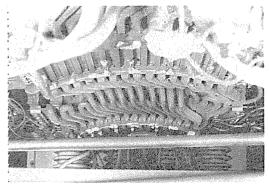


図 16. 機能試験用電動機モデル AC motor model for functional evaluation test.

%にした溶液に室温で30日間浸漬し、破壊電圧値・絶縁抵抗・重量減少等について試験を行なったが、レジン単独の場合と同様にすぐれた耐薬品性をもっていることが確認されている。

4.5 総合機能評価

機器の絶縁は複合絶縁組織でありこの場合個々の材料の相乗効果 が必ずしも発揮できるとは限らず、実際の機器が受けると考えられ る劣化要因を試料に与え、その機能に即した試験、すなわち総合機

図 17. ヒートサイクル方 法 Thermal cycle conditions.

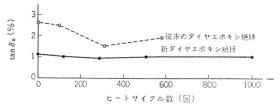


図 18. 機能試験による tan boの変化 Change in tan bo after thermal cycling.

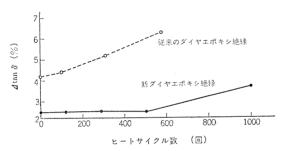


図 19. 機能試験による ⊿tan δの変化 Change in ⊿tan δ after thermal cycling.

能試験を行ない判断する必要がある。

この試験方法としては数多くのものが推奨され実施されているが、機器の絶縁に関して、 寿命 テスト でもあるので比較的短期間に信頼性のある テータ を求める必要がある。 当社では実機に最も即した方法として劣化要因を個別に試料に与えるのではなく、並行して同時に与える方法で加速劣化させ各種非破壊特性を測定しながら、最終的には破壊電圧の低下率で評価を行なう方法を採用している(5)。

図 14. はこの試験装置の ブロック 図であり図 15. は試験装置の全景である。また、誘導電動機の固定子 モデル を図 16. に示す。試験条件としては、加速試験を行なえるようにすることはもとより実用状態との対応をそこなわないように配慮しなければならない。この結果図 17. に示す条件で試験を行なった。

機能試験中 ヒートサイクル後、試料の温度が 50°C になったとき、乾燥状態で tan δ₀ (6.6 kV の絶縁に対し 2 kV での tan δ) および Δtan δ (6.6 kV での tan δ と tan δ₀ との差) を測定し各々を図 18., 19. に示す。tan δ₀ は従来の ダイヤエポキシ 絶縁のものは変動がかなりあるが、新 ダイヤエポキシ 絶縁のものは通常の劣化傾向と同様に、ヒートサイクル とともに減少している。また Δtan δ では従来の ダイヤエポキシ 絶縁のものは ヒートサイクル とともに増加の傾向が若干あるが、新 ダイヤエポキシ 絶縁のものはその傾向がきわめて少ない。 これは コイル 絶縁組織の耐熱性により、絶縁層に発生する ボイド の状況が異なるためで、新 ダイヤエポキシ 絶縁の耐熱性が優っていることを表わす。

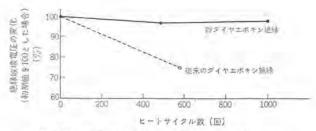


図 20. 機能試験による対地絶縁破壊電圧値の変化 Change in break down voltage after thermal cycling.

対地絶縁の破壊電圧値に関しては10kVで1分間印加後、2kVで1分間保持のステップパイステップ法で求めた。従来のダイヤエポキシ絶縁は575 サイクル経過後、初期値の75%程度に低下しているが、新ダイヤエポキシ絶縁は1,000 サイクル経過後でも初期値の98%の値を保持しており、低下率が少ない(図20.)。これにより新ダイヤエポキシ絶縁は、F種として実績のある従来のダイヤエポキシ絶縁に比較し耐熱性が非常にすぐれており、このため絶縁組織の信頼性が一層向上していると言える。

5. む す び

以上全含浸方式による高圧誘導電動機絶縁について、その絶縁方式および代表的な諸特性について述べた。全含浸方式における絶縁特性は使用材料はもとよりレジンを絶縁層の中へ完全に充てんし、一体化させる製造技術によっても左右されるので当社では材料開発と同時に、この面の検討も十分行なっている。また研究段階での各種絶縁データは、信頼性管理を基礎的手法として、当社および三菱総合研究所で開発した電算機利用データファイリングシステムによる信頼性手法に基づき解析されている(6)。このため信頼性のより優れた新ずイナエポキシ絶縁を確立することができた。

この特性を要約すると,

(1) 高温時での電気的、機械的特性が特にすぐれており、機器

の信頼性がより向上した。

- (2) 耐熱性が優れておりF種絶縁としての耐熱寿命を十分にそ なえている。
- (3) 耐湿・耐水性にすぐれ、機器製造工程中に固定子巻線を水中に浸漬し水中耐圧試験、水中絶縁抵抗の測定を行ない絶縁の品質管理を行なっている。
- (4) 絶縁組織を構成する主な材料はマイカとエポキシレジンであり、 長期間のヒートサイクルを行っても破壊電圧値の低下が少なく 長寿命 である。
- (5) 鉄心みぞ部の コロナ 防止処理を効果的に行なうことが 可能 である。このため コロナ 浸食を防ぎ絶縁が長寿命となる。 などである。

このように 新 ダイヤェポキシ 絶縁は従来の ダイヤエポキシ 絶縁に比べその性能および信頼性がより向上した。このため全閉形機種にかわり、本絶縁組織をもつ開放形機種の使用が可能なことは言うまでもなく。また保守も容易である。

おわりに、との絶縁組織の開発にあたり当社中央研究所・生産技 術研究所、関係各製作所のかたがたから絶大なる御指導と御支援を いただいた事に対しことに衷心より謝意を表わす次第である。

参考文献

- (1) 穴山, 伊藤(公), 岡橋, 伊藤(昭); 三菱電機技報, 39, No. 9 (昭 40)
- (2) 柴田, 伊藤: 三菱電機技報, 40, No. 6 (昭 41)
- (3) 平林, 坂田, 美藤, 渡部:電気学会 昭 48 全大, No. 373
- (4) 美藤, 平林, 坂田, 渡部:電気学会 絶縁材料研究会, IM 73-41
- (5) 坂田, 川上, 美藤:三菱電機技報, 42, No. 11 (昭43)
- (6) 下地,高倉,平林, 倉林:第3回日科技運信頼性 シンポジウム, III-5

高圧電動機レジンリッチ絶縁

伊藤 昭八郎*•中村 陽 一*

平林庄司**•農守熊太郎**•坂上義和**•五島浩一**

Development of Resin-Rich Insulation System for High Voltage AC Motors

Nagasaki Works

Shôhachirô Itô · Yôichi Nakamura

Manufacturing Development Laboratory

Shôji Hirabayashi • Kumatarô Nômori Yoshikazu Sakaue • Kôichi Goshima

Resin-rich insulation uses pre-preg reconstituted mica containing B-stage thermosetting resin. Because of it, insulation processes are completed by heat press molding only. This is a marked advantage to shorten the work by omitting the impregnation. Having attention to this point, Mitsubishi has been developing a resin-rich insulation system applicable to the main insulation of high voltage motors. As a result, it has been proved that this insulation system has better characteristics of electrical, mechanical and thermal aging than conventional insulation system based on mica splittings and vacuum pressure impregnation process. Several machines using this insulation have been built for practical uses. This article is a report made on the outlines of Mitsubishi resin rich insulation.

1. まえがき

高圧回転機においても近年,使用環境の悪化および,運転温度の上昇など,使用条件は過酷になっており,絶縁層もこれらの使用条件に耐える絶縁性能が要求されるようになった。一方絶縁材料も,各種高分子材料や無機薄葉材料の進歩は著しく,これら新材料を有効に活用して,高性能化の要求に適合した新しい絶縁組織が出現してきている。高圧回転機の絶縁用樹脂には,電気的,機械的,熱的にすぐれたエポキシ樹脂が広く使用されており,当社では,相当早い時期に真空含浸方式で実用化している(1)(2)。また薄葉材料においても,すでに発表したように,従来からのはがしマイカに代る集成マイカの実用化を完了している(3)。このたび,これらの材料を新しい考え方に基づいて,有効に組合わせたレジンリッチ 絶縁 システム (プリプレグ方式ともいう)を開発した。

レジンリッチ 絶縁は欧米において生まれた高圧回転機 コイル の新しい 絶縁工作法である。この方法はその言葉が示すように、熱硬化性樹脂を多量に含んだマイカテープを使用する。コイル 導体に、レジンリッチマイカテープを巻きつけて、熱プレスにより成型重合を行なうだけで絶縁加工工程が完了できるので、従来からの真空含浸方式と比べ、レジンリッチ 方式には、含浸工程が省略できるという特長がある。

筆者らは、レジンリッチ 絶縁に適したマイカテープをはじめ、コイルの製造プロセスの開発を行なった。その結果耐熱性・耐水性・機械特性・長期寿命試験・信頼性試験等において、従来のはがしマイカ真空含浸方式の絶縁組織に比べまったくそん(遜)色がなく、十分実用化できることがわかった。ここに、当社のレジンリッチ 絶縁の特性と実用化の一端を紹介する。

2. レジンリッチ絶縁方式

2.1 絶縁加工法

レジンリッチ 絶縁に使用する マイカ 材料は、 テーピング 作業を助ける裏 打材と、集成 マイカ はく(箔)を重ね合わせ、 硬化剤を含んだ ェポキシ 樹脂を塗布加熱して作られ、 テーピング 作業に適した柔軟な性状が必 要である。コイル 導体に、一定量の マイカテープを半重ね法などの方法で巻き重ねる。プレス 成型は電熱や熱媒体により加熱する熱板を備えた油圧 プレス を使用する。一定温度に予熱した プレス に、レジンリッチテープを巻いた コイルを セット し、樹脂が軟化溶融したのち、徐々に圧力を加え、圧縮して成型する。同時に樹脂の重合反応も完了し、ち(緻)密で強固な絶縁層が得られる。

2.2 レジンリッチ絶縁方式の特長

レジンリッチ 方式は, 真空含浸方式にくらべ, 次のような 特長がある。

- (1) レジンリッチ 方式は、図 1. の工程図で示されるように、真空 含浸方式の複雑な含浸工程や含浸樹脂の管理が不要である。
- (2) プリプレク方式なので、作業の取扱いが容易であり、衛生、 公害などの点で有利である。また、多量の液状樹脂を取扱わないの で火災などに対する安全性も高い。
 - (3) コイルの絶縁構成を設定するさい、材料や工作法の選択範囲

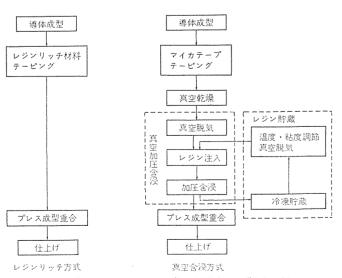


図 1. レジンリッチ 方式と真空含浸方式の製造工程 Comparison of manufacturing process between resin rich system and vacuum pressure impregnation system.

303

が広いので、コイルエンド などの特定箇所に、重合硬化後も柔軟性を有 する特殊な絶縁層を施すことができるなど、広範囲の要求を満足さ せることができる。

(4) 高電圧回転機の絶縁用樹脂には、電気的、熱的、機械的特性、とくに、マイカや導体との接着性がすぐれているエポキシ樹脂が広く使用されている。しかし、エポキシ樹脂は、一般に粘度が高く、高電圧機器などの厚い絶縁層に含浸するには、粘度を下げねばならず、エポキシ樹脂の優秀な特性がそこなわれることが多い。これに対し、レジンリッチ絶縁に使うエポキシ樹脂は、粘度が高くても、集成マイカに含浸でき、ブリブレグ状テーブを作れるので、エポキシ樹脂の優秀な性質をそこなわずに、有効に利用できる。

3. レジンリッチ絶縁の性能

3.1 集成マイカテープ

レジンリッチ 集成マイカテープは、欧米において既に相当量が販売されており、輸入も容易である。それらのうちでも、S社の製品は使用実績が多く、絶縁性能も優秀で耐熱F種の評価を得ている。筆者らは、これらの材料を入手し詳細に評価した。

また、欧米の製品に比べて、より優れた レジンリッチ 集成 マイカテーブ を開発すべく研究を続けてきた結果、絶縁性能の優秀な 2 種の テーブ を完成することができた。これらの材料の組成を表 1. に示す。

当社の開発品Aは、S社の製品と同系統のノボラック系ェボキシ 樹脂を溶剤で溶かし、粘度を下げて、塗布したものである。ただし、集成マイカには、Integrated 系のはくを使用して、樹脂含有量を下げ、マイカ成分の含有量を上げることにより、高電圧特性の改善をはかっている。

開発品Bは、ビスフェノール A系ェポキシ樹脂を、溶剤を使わず集成マイカはくに塗布して製作した、全くユニークな材料である。

これらの集成マイカテーブは、テーピッグ性はもとより、室温保管寿命も長く、非常に優秀である。

3.2 絶縁層の特性

コイルの絶縁処理と同じ条件により、板状試料を作り、種々の特性 を測定した。

3.2.1 物理特性

3種類の絶縁層の物理特性を表 2. に示した。絶縁層の標準品と考えられる S社の絶縁層と比較し、当社A及び当社Bの絶縁層はほぼ同等の特性を有している。また、曲げ強き、引張り強さは高温においてもほとんど低下せず、レジンリッチ 絶縁が十分に強い機械的強度をもち、信頼性の高い絶縁層であることがわかる。

3. 2. 2 耐熱性

コイル 絶縁層の耐熱寿命を評価する方法は、種々公表されている(4)。

表 1. レジンリッチ マイカテーブ 一覧表 Resin rich mica tapes.

71	柳成		集成マイカ はく(箔)の種類	类打村	エボキシ樹脂	製造時の 区分	機脂族有量
Si	上(輪ス	(11)	Samica 系 (構成法)	ガラスタロス	ノボラック系	溶剂型	38~44 %
当	往	A	Integrated mica 系 (木ジェット法)	ガラスクロス	ナボラック系	群創璽	33~38 %
24	乱	В	Samica 系 (姓成法)	ガラスケロス	ビスフェナー ルA系	無溶剤型	40~44.07

ここでは 絶縁層を 180°C, 200°C, 220°C の各温度で長時間, 加熱 劣化させ, 曲げ強さが初期値より 20 %低下した時間を, アレニウスプ ロット するという方法をとった。この結果を図 2. に示す。

耐熱 F 種の劣化時間の基準となる IEEE No. 275 では、190°C、7 日×10 サイクル(合計 1,680 時間) または 210°C、2 日×10 サイクル 及び 170°C、28日×10 サイクル後の特性で材料の良否を評価している。 レジンリッチ 絶縁層の試験結果によれば、190°C で 1,680 時間を越えて おり、規格の基準時間では、機械的強度の低下はほとんど無視できるので、F 種耐熱寿命を保証できるものと考えられる。また、S 社 絶縁層との比較においても、当社開発品は同等以上の強度を保持しており、耐熱 F 種であることが 裏付けられる。

3. 2. 3 耐薬品性

JIS K 6911 に準じ、絶縁層を各種薬品に 20°C で30 日間浸せきし、 重量変化を測定した。この結果を表 3. に示す。

しジンリッチ 絶縁層は、トルエン、ガンリン などの有機溶剤はもちろん、酸、アルカリ に対してもほとんど変化を示さず、強い耐薬品性を有していることがわかる。このことは、レジンリッチ 絶縁を施した回転機が 化学工場などの耐薬品性を必要とするところに使用でき、保守管理の面でも有利なことを示している。

3.3 コイルの特性

3.3.1 雷気特性

レジンリッチ 絶縁を施し、ガード電極を付けた コイルの tan δ-電圧特性

表 2. 絶 緑 層 の 物 理 特 性 Physical properties of mica insulating layers.

項目	m	s at	当 社 A	当 社 B	
助げ強き (kg/mm ²) (20°C)		29.6	25.3	24.2	
	20°C	18.5	17.2	16.8	
引張り強き(kg/mm²)	155°C	15.9	16,8	14.2	
緩弾性係数(kg/mm²)	20°C	5,325	5,447	5,120	
econ reluctor (KK) mm.	155°C	5,048	5,310	3,950	
(III TS (26) (20°C)		0.35	0.32	0.43	
線 縣 張 係 数 (10-4/C*)		8.5	13.7	8.3	
熟伝導率 (keal/m	h··C)	0.15	0.14	0.14	

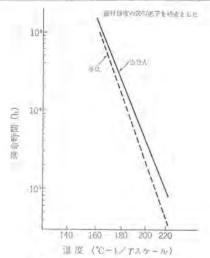


図 2. 寿命時間と加熱温度の関係 Life-temperature curves of coil insulating layers.

表 3. 絶 縁 層 の 耐 薬 品 性 Chemical resistance of mica insulating layers.

遊	in in	名		Ħ	氖	坳	加	率	(%)	
梁	LH1	73	S		7	Ŀ		当	社	A
碗	酸	(5%)		0.1	5				0.21	
塩	酸	(5%)		0.1	0				0.17	
ăi:	酸	(5%)		0.1	7				0.10	
アンモ	- アホ	(5%)		0.2	4				0.23	
水酸化ナ	・トリウム	(5%)		1.4	0				1.38	
食 岩	省 水	(飽和)		0.1	2				0.14	
メチルエラ	-ルケトン			0.0	2				0.02	
トル	エン			0.0	5				0.05	
F D 0	ソレン			0.0	5				0.08	
エチルア	ルコール			0.0	6				0.07	
ガ ソ	リン			0.0	2				0.02	
トラン	ノス油			0.0	13				0.07	

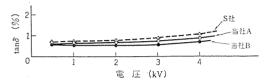


図 3. 3.3 kV 級 コイルの tan δ-電圧特性 Tan δ vs. voltage curves of model coils.

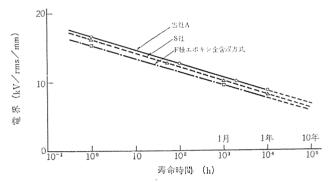


図 4. 6.6 kV 級 コイル の電界強度-寿命 (*V-t*) 特性 Voltage endurance curves of model coil.

を図 3. に示す。 3 種類の コイル は、いずれも定格電圧まで、ほとんど平たんであり、電圧上昇に伴う tan δ の増加は微少である。 レジンリッチ 絶縁層がち密であり、絶縁層内の ボイドが非常に少ないことを示している。 3 kV 級および 6 kV 級 コイル の スロット 部の コロナ開始電圧は、いずれも常規対地電圧以上である。また定格電圧における、コロナ最大放電電荷も、平均が 10-10 クーロン 以下と非常に小さい。 これらのことは、 運転電圧における コロナの発生をまったく 考えなくてもよく、レジンリッチ 絶縁層の優秀さを示しているものといえる。

コイルの $\tan \delta$ -温度特性と破壊電圧-温度特性を図 5, 6. に示した。 3種の レジンリッチ 材料による コイル は、いずれも、実使用の高温度領域において特性の低下は、ほとんど認められない。特に、当社 B 絶縁を施した コイル は高温特性がすぐれている。

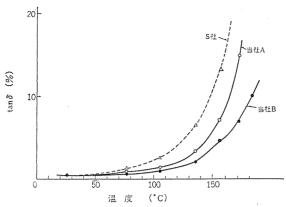


図 5. コイルの tan δ-温度特性 Tan δ vs. temperature curves of model coil.

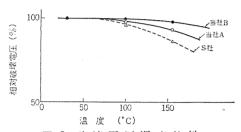


図 6. 破 壞 電 圧-温 度 特 性 Breakdown voltage vs. temperature curves of model coil.

図 7. 3.3 kV 級 コイル の水中課電劣化による絶縁抵抗の変化 (常時印加電圧, 3.3/√3 kV)

Insulation resistance characteristics of model coil immersed in water.

3.3.2 耐水性

高電圧電動機においても、最近は、使用環境の悪化や高湿度状態での使用など、過酷な条件で運転される場合が多く、十分な耐湿性をそなえた絶縁が要求されるようになった。レジンリッチ 絶縁が耐薬品性にすぐれた絶縁層であることは、前述のとうりであるが、コイルに適用した場合には、コイルエンド部の工作方法が特に重要となる。

図7.は、コイルエンド部に特別な工夫を払って製作したコイルを水中で電圧印加を行ない絶縁抵抗の変化を測定したものである。このように、水中で課電するという、きわめて過酷な試験においてもレジンリッチ絶縁はすぐれた特性を維持している。これはレジンリッチ絶縁の大きな特長であり、耐湿性・耐水性・耐薬品性に対する信頼性が大きく、実使用における管理を容易にすることができる。

3. 3. 3 機械的疲労特性

起動停止などの振動や、加熱冷却時の膨張、収縮などの繰返えし応力による疲労多化の特性を調べるため、振動疲れ試験を実施した。これは、捧状の導体の周囲に絶縁をほどこし、片持ちはりにおいて一定のひずみを30回/砂の割合で与え、絶縁層が破壊する回数を測定したものである(5)。レジンリッチ絶縁とエポキシ樹脂全含浸絶縁の試験結果を図8.に示した。

コイル 絶縁層に対する機械的な応力の最も大きいものは,突発短絡 事故のさいの変形であり,試作実機の実測結果では,絶縁層に対し 3.6 kg/mm² であった⁽⁶⁾。 レジンリッチ 絶縁は,このような突発短絡事

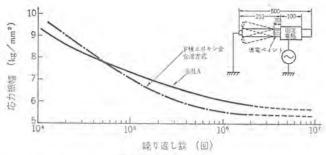


図 8. 曲げ疲労特性 Bending fatigue characteristics.

故と同程度の応力Fでも 107 回以上の繰返し応力に耐えるもので、機械的特性においても十分な信頼性が得られた。また、F種エポキシ全合浸方式により 製作したコイルの特性と比較しても、 ほぼ同等の特性を有し、何らそん色のない絶縁であることも確認された。

3.3.4 総合機能評価試験

前項までに述べたように、レジンリッチ 絶縁は、電気的・機械的性質においても、耐水・耐熱・振動などの劣化要因に対しても優秀な性質を示すことが確認された。しかしこれらは、単独の劣化要因について評価したものである。実際の回転機の絶縁層は、熱や、水、薬品による化学的劣化、熱応力や振動などによる機械的劣化、高電圧下のコロナなどによる電気的劣化 などが、すべて組合わされて進行する。したがって、これらを十分考慮し、種々の劣化要因を組合わせた総合的な評価が必要になる。

このような試験法として、IEEE No. 275の E-F+72 試験が有名である。しかしこの試験は、加熱冷却をA-72 中で行なうために絶縁層の温度変化は比較的おそく、実機のE-F2 事のを模擬できない欠点がある。当社では、コイル 導体を通電により 強制的に 190° まで加熱し、つづいて 60° こまで冷却する熱 90° サイクルを 100° 100 回行ない、この間に加湿と振動を加えるという、実機に近い方法で評価を行なっている 90° 275 の F種評価基準の 90° の水準における通算加熱時間に相当する。

3.3.5 実用機コイルの絶縁特性

現在までに、輸入品および開発品Aの マイカテープ を使い、レジンリッチ 絶縁をほどこした、容量が 100 kVA/L1 MVA までの電動機を数 台製作した。そのうち 3.3 kV 2,250 HP 同期電動機の写真を図 11. に、また コイルの tan δ-電圧特性を図 12. に示す。非常に優秀な特性であることがわかる。

4. む す び

レジンリッチ 絶縁の特長と代表的な絶縁性能について述べた。この レジンリッチ 絶縁は、適切な材料を開発し使用することはもちろん、コイル に適合する製造技術の開発も、絶縁性能を安定化するうえで非常に重要である。 当社では、エボナシ 樹脂や集成 マイカ の基礎的研究成

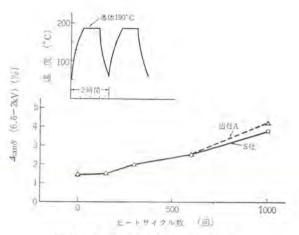


図 9. 機能試験による d tan δ の変化 Variation of d tan δ in functional test.

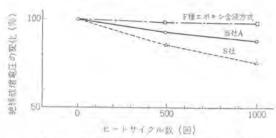


図 10. 機能試験による絶縁破壊電圧の変化 Variation of breakdown voltage in functional test.

図 11. レジンハッチ 絶縁方式による同期電動機固定子 (3.3 kV 26 p 2,250 HP) Resin rich insulation for 3.3 kV 26 p 2,250 HP

synchronous motor.

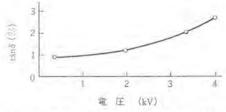


図 12. レジンリッチ 絶縁による同期電動機固定子 コイルの高電圧特性

Dissipation factor vs. voltage curve of 3.3 kV 2,250 HP resin rich insulation coil.

果と、工作技術の蓄積を有効に生かし、絶縁特性のすぐれた材料の開発と、これによく適合する工作技術の確立を行なうことができた。 レジンリッチ 絶縁方式による コイル の絶縁特性を要約すると、

- (1) 電気特性が非常に良好である。
- (2) 耐熱性がすぐれており、F種としての耐熱寿命を有している。
 - (3) 耐湿・耐水・耐薬品性が良く、機器の保守が容易である。
 - (4) 機械的に強固な絶縁組織である。
 - (5) 長期 ヒートサイクル による絶縁破壊電圧の低下が少ない。

当社では、さらに、レジンリッチ 材料と工作技術の改善をはかり、適用機種の拡大と、より以上の絶縁性能と信頼性を得るべく努力を重ねている。

おわりに、この レジンリッチ 絶縁方式の開発にあたり、 当社中央研

究所,関係各製作所のかたがたから絶大なる御指導,御援助をいただいたことに対し,紙面を借りて厚く感謝の意を表わす次第である。 (昭和149-1-14 受付)

参考文献

- (1) 穴山ほか:三菱電機技報, 39, No. 9, 81 (昭 40)
- (2) 柴田ほか:三菱電機技報, 40, No. 6, 969 (昭 41)
- (3) S. Hirabayashi et al: 11 th E. I. Conference, 73 CHO 777-3-EI, 15 (1973)
- (4) 芹沢ほか:電気絶縁塗料(昭44)産業図書
- (5) 川上ほか:昭47 電学連大,電気電子材料,176頁
- (6) 村上ほか:第34回絶縁劣化懇談会(昭46)
- (7) 坂田ほか:三菱電機技報, 42, No. 10 (昭 43)

高電圧回転機用エポキシ含浸樹脂と集成マイカ材料の開発

柴山 恭一*·岡橋 和郎**·北川 達夫**

Development of Epoxy Impregnating Resins and Reconstituted Mica Materials for High Voltage Rotating Machines

Manufacturing Development Laboratory Kyôichi Shibayama • Kazuo Okahashi • Tatsuo Kitagawa

Four kinds of epoxy impregnating resins and reconstituted mica insulating materials have been developed for high voltage insulation of large generators. Then, as a result of study on the relation of various characteristics of these materials and of mica epoxy composites with the characteristics of model coils, it has been aimed at to develop an insulation system of much higher reliability. Coils insulated with the materials thus developed have a very excellent voltage characteristic of tan δ, mechanical property, thermal stability and heat cycle characteristics so that their high reliability available is good for enabling them to be used for building large capacity generators.

1. まえがき

電力需要の増大に伴い、発電機の大形化、大容量化、高電圧化は ますます進行しており、 固定子 コイル 絶縁に対する要求も過酷にな ってきた。

*セラックやアスファルトコンパウンドによる絶縁方式の欠点を一挙に解決 した Westinghouse 社の不飽和 ポリエステル 樹脂を用いた Thermalastic Insulation が 1949 年に発表されて以来, 国内外の電機 メーカ は より信頼性の高い固定子コイルを製作するために、合成樹脂を用い た絶縁方式を研究し、採用してきた。

合成樹脂としては粘度が低く、溶剤を含まずしかも硬化時に揮発 性物質を生成しない熱硬化性樹脂ということで、不飽和ポリエステル 系樹脂と エポキシ 系樹脂が多く使われているが、両者共広範囲におよ ぶ変性が可能であり、その方法によっては絶縁性能を大幅に変更し うる含浸樹脂の開発が可能であるけれど。一般的には、エポキシ樹脂 の方が電気的、機械的、熱的性質にすぐれており、大形発電機用固 定子 コイル 絶縁の含浸樹脂の最近の傾向としては、 エボキシ 樹脂の方 が広く採用されている。

一方、高分子化学が非常に進歩した今日においても、マイカの耐 コロナ性・耐電圧性・耐熱性などの諸性質は合成樹脂をはるかに 凌 擱しており、 大形発電機の コイル 絶縁には不可欠の材料として広く 使われている。マイカとしては硬質はがしマイカが中心であったが, 戦後開発された集成 マイカ が著しく改良され、今日においては単に はがしマイカの代換品というよりは新しい絶縁材料として急速に需 要が広まり、発電機コイルの主絶縁壁として広く適用されるように なってきた。

当社においても、昭和29年に不飽和ポリエステル樹脂によるダイヤラ スチック 絶縁方式(*)を発表して以来、大形発電機に適用し、多くのす ぐれた実績を得てきた。また、エポキシ 樹脂については、早くから研 究開発を行ない、すでに実機に適用し好評を得た(2)。一方、集成マ イカ 材料についても、 そのすぐれた特性に早くから着目し、鋭意開 発を進めてきた結果、実用に供しうるものを量産化することに成功 し、各種の方法で実機に適用する段階となった(2)。

最近、真空含浸方式とは全く別のコイル製造方式であるレジンリッチ 絶縁方式が ヨーロッパを中心に拡大適用されているが、これについて

は別の機会にゆずり、本報告では、 真空含浸絶縁方式に用いる エボ キシ 系含浸樹脂と集成 マイカ 材料、および、 これらの マイカエポキシ 複 合絶縁物の特性とモデルコイルによる特性や実機を模擬した絶縁機能 試験との関係について述べる。さらには、実機における挙動との関 連について述べる。

2. 含浸樹脂

2.1 エポキシ樹脂の問題点

高分子化学の著しい進歩にもかかわらず、現在実用に供しらる真 空含浸に適した無溶剤形 熱硬化性樹脂としては不飽和 ポリエステル 樹 脂と エポキシ 樹脂が主体であり、発電機の コイル 絶縁用含浸樹脂もこ の2種類が多く使われているが、最近の主流は エポキシ 樹脂へと移行 しつつある。

一般に、エボキシ 樹脂は不飽和 ボリエステル 樹脂に比べて機械的、熱 的性質にすぐれているが、粘度が高いので高温で含浸を行なう必要 があり、さらに、ポットライフが短いので真空含浸操作が困難であると いう欠点を有している。

そこで、エボキシ 樹脂を含浸樹脂として用いる場合、絶縁処理法と 材料の両面から種々の改良がなされている。絶縁処理法からの改良 としては エポキシ 樹脂の粘度を一定に保ちながら ポットライフ を延長さ せるために、一定割合の新鮮な含浸樹脂で含浸そう(槽)内の含浸樹 脂を置換していくメイクアップと呼ばれる方法があり、 理論的にも適 確に使用寿命を予測できる(3)ので広く使われているものと思われる。 材料面からの改良はエポキシ樹脂は広範囲の変性が可能であるとい う特長を生かして種々の方法で行なわれている。

2.2 ポットライフ

エポキシ 樹脂は非常に種類が多く、化学構造の異なったものも多く 製造されており、また、硬化剤・硬化促進剤の種類も非常に多いの で含浸用としてのエポキシ樹脂組成物も非常に多く考えられるが、ボ ットライフ を延長させるには硬化剤として有機金属系さく(錆) 化合物 に代表される潜在性硬化剤が広く使われていると思われる(4)(5)(6)。

さらに、硬化剤として反応性の小さい酸無水物系硬化剤、例えば メチルエンドメチレン 無水 フタール 酸を用い、 室温付近では エポキシ 樹脂と 酸無水物との反応を進行させないが、高温ではゲル化を速める潜在 性硬化促進剤の開発も盛んに行なわれている(*)。

表 1. エポキシ系含浸樹脂の主成分と特性 Compositions and characteristics of four types of epoxy impregnating resins.

記 号	含浸樹脂の主成分	比 重 (25°C)	粘 度 (25°C) (cps)	ポットライフ (0°C 放置) (日)	収縮率 (%)
E-1	ビスA形エポキシ	1.20	900		3.4
E-2	ビスA―シクロ混合形エポキシ	1.18	67	50	6.0
E-3	変性シクロエポキシ	1.10	64	150	9.1
E-4	変性エポキシ	1.03	13	300	8.7

ポットライフ 延長法の3番目としては周知の 硬化剤に対し、 反応性の小さい エポキシ 樹脂を用いる方法がある。 例えば、 イミダヴール 化合物は ビスフェノール A形の エポキシ 樹脂に対してはポットライフ は短いが、 脂環式 エポキシ 樹脂に対しては室温付近では ポットライフ が非常に長く、高温では ゲル 化時間が速いという特長を持っている⁽⁸⁾。

以上の方法以外に、コイルの絶縁組織からながめたポットライフの延長法もある。含浸樹脂としてはエポキシ樹脂と酸無水物の混合系を用い、硬化促進剤をマイカテープ中に含ませておくとか⁽⁹⁾、含浸樹脂としてはエポキシ樹脂のみを用いマイカテープ中に硬化剤と硬化促進剤を含ませておく方法などがそうである。

発電機用 コイル 絶縁の含浸樹脂としては長い ポットライフのほかに無溶剤で低粘度であることが必要である。粘度低下剤としては種々のものが市販されているけれど、エポキシ 樹脂本来の特長を低下させるものが多く、慎重な配合技術を必要とする。

当社では、以上の考え方を基礎にして最適の絶縁処理方式、エポキシ 樹脂用 潜在性硬化剤、潜在性硬化促進剤を開発することに成功し、大形発電機 コイル 絶縁用 エポキシ 含浸樹脂を 4 種類開発した。開発した含浸樹脂は表 1. に示すように、ビスフェノール A形 エポキシ 樹脂 (E-1)、ビスフェノール A形 エポキシ 樹脂と脂環式 エポキシ 樹脂との混合形(E-2)、脂環式 エポキシ 樹脂を当社独自の方法で変性したもの (E-3)、ビスフェノール A形 エポキシ 樹脂を当社独自の方法で変性したもの (E-4)の 4 種類で、いずれも これらの 樹脂に最適の硬化剤・潜在性硬化 剤・潜在性硬化 別・潜在性硬化促進剤などが使われている。これらの含浸樹脂は ポットライフ が長く、 ビスフェノール A形 エポキシ 含浸樹脂 E-1 以外 は 室温で含浸可能である。 E-1 の収縮率は標準的な エポキシ 樹脂と 同程度であるが、他の含浸樹脂はやや高い値を示している。

2.3 機械的性質

図 1., 2. に直径 $\frac{1}{4}$ インチ,荷重 5 kg の鋼球を硬化 ェポキシ 樹脂の 平板状表面に押し込み,荷重 を 15 秒間かけて試料を変形させ,除 荷による 15 秒後の試料の変形回復量から求めた ロックウェル 硬度と クリープ コンプライアンス の 温度特性を示す。 ロックウェル 硬度は ASTM-D 785 A 法に準じたもので, その 極小値は ェネルギー 弾性から エントロピー 弾性への転移を示し,極小値の小さいものほど クリープ コンプライアンス が大きくなることが定性的に説明されており,今回開発した 4 種類の含浸樹脂も同様の傾向にある。さらに,これら含浸樹脂の転移温度はかなり高く,低いもので 150° C,高いものは 198° C である。

図 3., 4. に引張り強さ、伸び率の温度特性を示す。 脂環 π ポキシ 樹脂を含む含浸樹脂 E-2 と E-3 は高温になっても引張り強さはあまり低下しないが伸び率は小さい。 E-4 と E-1 は高温での伸び率が大きく、 110° C 付近で極大値を示す。

図 5. に突き合わせ法による接着強度の温度特性を示す。 25×25 mm の 2 個の鉄片間に含浸樹脂を塗り、 10 kg の圧力をかけながら

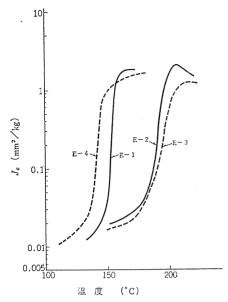


図 1. クリープコンプライアンス特性 Creep compliance characteristics of epoxy impregnating resins.

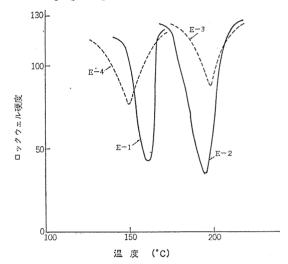


図 2. ロックウェル 硬 度一温 度 特 性 Rockwell hardness vs. temperature.

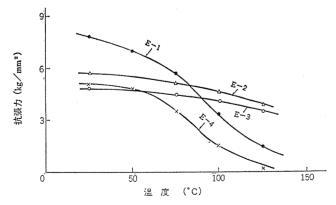


図 3. 抗 張 力一温 度 特 性 Tensile strength vs. temperature.

所定の硬化条件で硬化させた鉄↔鉄間の接着強度、および含浸樹脂に浸せきさせた集成マイカを2個の鉄片間にそう入し、10 kg の圧力をかけながら硬化させたマイカエポキシ複合絶縁物の接着強度の2とおりを測定した。脂環式エポキシ樹脂を含まない含浸樹脂 E-1 と E-4 は E-2 と E-3 に比べて室温付近ではかなり強いが、高温にな

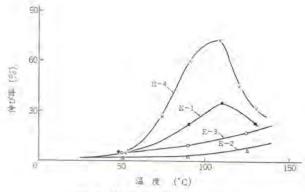


図 4. 伸長率一温度特性 Elongation vs. temperature.

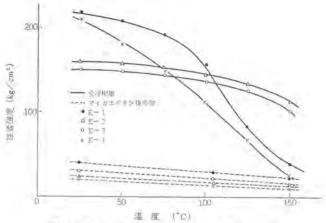


図 5. 含浸樹脂および マイカエポキシ 複合絶縁物の 接着強度一温度特性

Adhesive strength of epoxy impregnants and mica epoxy composites as a function of temperature.

ると弱くなり、脂環式エポキシ樹脂の有無によりかなり相違がある。

マイカエボキシ複合絶縁物の場合、含浸樹脂に比較してかなり小さな 値を示し、含浸樹脂の接着強度の大きさの順序と必ずしも一致して いない。

2.4 誘電性質

図 6. に 60 Hz で測定した tan 8 の温度特性を示す。 含浸樹脂の 種類により、tan 8 ビークの生じるものがあるが、 硬化剤あるいは硬 化促進剤の種類による エポキシ 樹脂の分子構造の違いによる もの で ある。また、tanδの絶対値は高温でもかなり低く、良好な値を示 1. 763.

2. 5 熱劣化特性

図 7. に 25×25×1 mm の樹脂板を 200°C の空気中で加熱したと きの重量減少率を示す。樹脂板の厚さを変化させて測定すると、加 熱重量減少は拡散律速反応に支配されており(10), これより求めた E-4 の 200°C における速度定数は 46.5×10-2(mm・%)2 になるが、 180°C, 160°C ではそれぞれ 0.32×10-2, 0.15×10-2 と 小さくなっ ている。E-3 の場合の速度定数は 200°C で 6.50×10-2, 180°C で 1.90×10-2, 160°C では 0.46×10-2 になった。 この速度定数から求 めた加熱減量の活性化 エネルギー は、E-1 が 17、 E-2 が 19、 E-3 が 26, E-4 が 15 kcal になった。

3. 集成マイカ複合材料

3.1 基本物性

高電圧絶縁に使用されている集成マイカとエポキシ樹脂複合体の基 本的な物性は、現在のところまだ十分明らかにされたとは言い難い。

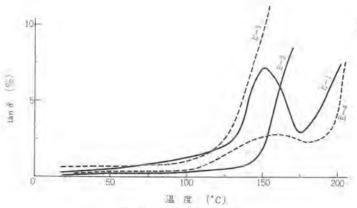


図 6. Tan 8-温度特性 Tan & vs. temperature.

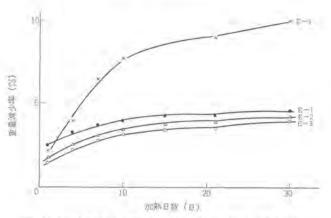


図 7. 加熱減量率の時間変化(加熱温度 200°C, 試料寸法 25×25×1.0 mm) Weight loss curves of epoxy impregnants as a

function of thermal aging at 200°C.

粒子充てん高分子の性質は充てん剤粒子の大きさ、大きさの分布。 形状、配向、凝集状態および充てん剤界面上の接着結合の強さなど のような各種因子の影響を受ける。

ここに集成マイカに用いられる程度の大きさのマイカ小片をエポキシ 樹脂に分散硬化させた系について、力学的および誘電的挙動を調べ た。各種の充てん割合で得られた硬化試片に対し、高温での弾性率 の異常性と室温以上で現われる吸収の機構について考察する。

試料は樹脂として E-1 を用い、マイカ には水 ジェット 法による集成 マイカを用い完全に硬化したものを用いた。試料構成を表 2. に示す。 測定は力学的性質は粘弾性 スペクトロメータ, 誘電的性質は誘電体損測 定器により周波数を変えての温度依存性を測定した。

図 8., 9. に引張り変形による貯蔵弾性率 E' および tan 8 の温度 依存性を示す。tanδの曲線から充てん系試料の場合に約80℃と約 150°C に二つの損失 ℓ -ク が観察される。 貯蔵弾性率 E' に関して 充てん系試料の ju 状態における E' の値は一般にとれまでに 報

表 2. マイカの充てん比率 Volume fraction of mica.

No.	Volume fraction of filler (%)
į	0
2	16.4
3	16.4 26.6
4	38.7
5	65.6

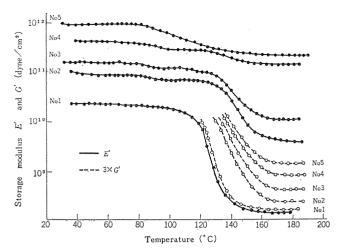


図 8. マイカエポキシ 複合絶縁物の動力学的性質 Temperature dependence of tensile and shear modulus of mica epoxy composites.

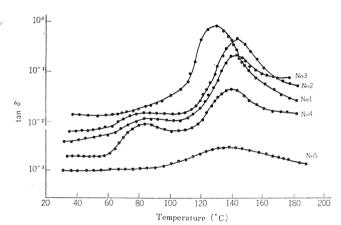


図 9. マイカエポキシ 複合絶縁物の力学的損失の温度依存性: Temperature dependence of mechanical loss tan δ of mica epoxy composites.

告されている粒子充てん系の 値 に 比べて 異常に高い値を示している⁽¹¹⁾。

次に図 10. に充てん剤量比の違いによる誘電的性質、6″一温度特性の値を示した。 無添加 ェポキシ 樹脂の 6″ の ピーク 位置は 大きく、鋭く出現している。 これに マイカ 充てん剤を加えていくに従い、ピーク の高さは減少し、 ピーク が不明確になってきているのが観察 される。 また、マイカ 充てん比率の高い場合には 120°C 付近に第二の吸収が明らかに認められる。以上の結果から、高温の弾性率の低下の小さいことと高温での二つの分散が観測されることについて考察する。

図 11. に ガラス および ゴム 領域での相対弾性率 E_c'/E_r' (E_c' および E_r' はそれぞれ充てんおよび未充てん系試料の弾性率)の充てん 量依存性を,それぞれ 30° C および 180° C で求めたものである。図 中に比較のための Kerner 式 $^{(12)}$ による計算結果を示した。相対弾性率の実測値は ガラス および ゴム 領域とも計算値より高いけれども 充てん率による相対弾性率の増加は ガラス 領域よりも ゴム 領域で特に著しい。このような挙動を説明する主な因子として,

- (1) ガラス および ゴム 領域での樹脂の ポアッソン 比の違い
- (2) 分子鎖 セグメント の充てん剤表面上への強い吸着
- (3) 高分子媒体の変形 モード

などが考えられる。しかし結局は(3)に関して試験片に印加された

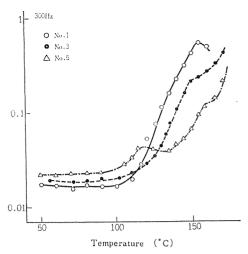


図 10. マイカ 充てん剤量の違いによる誘電的性質 Dielectric property vs. volume percentage of mica epoxy composites.

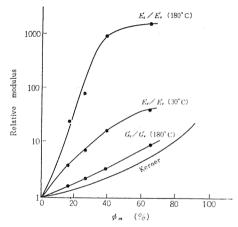


図 11. マイカ 充てん剤量の違いによる相対弾性率 Relative modulus vs. volume fraction of filler.

張力の一部がマイカフレークの間にはさまれた薄い樹脂層中でずりの応力に変換されると考える説明が妥当と思われる。このような概念の実験的証拠は、図 8., 11. によって示されるようにずり測定の結果によって与えられる。図から充てん系試料のずり弾性率に対して通常粒子充てん系で観測される値と類似の値を全充てん率範囲で観察することができる。 相対弾性率は図 11. に見られるように、Kerner 式による予測とかなりよく一致している。 これらの 解釈の妥当性を定量的に証明する ために は力学的等価 モデルで考察できる(13)

次に高温での分散に関しては、主分散の吸収の大きさはマイカ量と共に減少し、これがエポキシ樹脂の分子運動と関連することを示している。これらの吸収はエポキシ樹脂単体に観察されるガラス・ゴム転移に伴うセグメントのミクロブラウン運動の解釈にもとづく主分散であることはほぼ間違いない。また、第二の分散については力学的、誘電的にもマイカ充てん量と共に顕著になる。これはエポキシ樹脂およびマイカそれぞれ単独ではこの温度域に特別の吸収が存在しないことから、これらは複合体に特有のものと考えられる。したがって力学的には不均質系に固有の分散粒子の相対運動によるエネルギー損失に基づく粒界吸収であり、誘電的には不均質系に対する Maxwell-Wagner 形の機構(14)に基づく吸収であると考えられる。これらの知見は複合組織中の構造および充てん剤・マトリックス間の相互作用を明らかにするために重要と考えられる。

3.2 機械的性質

高電圧発電機・回転機の絶縁組織を考える場合、機械的な特性は 非常に重要な要素となる。 そしてその評価も、実機 コイル、モデルコイ ルなどで多数の評価試験をくり返すことは、時間と経済性の面で不 利である。材料選択には、小さい寸法の絶縁組織試験片による評価 が重要となる。図 8., 9. に示したごとく集成 マイカ を充てんするこ とにより、樹脂単体よりも力学的損失の大幅低下、高温での高い弾 性率が得られる。 また、表 3. にそれぞれ選択された含浸樹脂とマ イカの複合体による引張り強さ、縦弾性係数を示した。 試料として は前述の樹脂組成のもの, つまり E-1 は $\it E \sim A$ $\it A$ $\it X$ $\it I$ $\it $\it I$ $\it A$ $\it X$ $\it X$ $\it I$ $\it A$ $\it X$ $\it I$ $\it X$ $\it I$ $\it A$ $\it X$ $\it X$ ビス A-シクロ 混合系, E-3 は変性 シクロ 系, E-4 は変性 エポキシ 樹脂 を用い、マイカ 材料には水 ジェット 法で粉砕したはく(箔)と、はがし マイカ を用い、マイカボンド にはそれぞれの含浸樹脂に適性な ボンド を選 択し試料とした。表 3. の結果から室温における引張り強さは各含 浸樹脂とも大差がないことがわかる。しかし、高温での値に多少の 差が生じる。 また、 はがし マイカ と集成 マイカ の比較は組織板にお ける引張り強さでは明らかな差は見当らない。しかし、弾性係数に ついては集成マイカの方が高い値を示している。 その他の特性であ る最大ひずみ量についても同様の傾向が見られる。

表 3. マイカエポキシ 複合絶縁物の引張り強さと縦弾性係数 Tensile strength and elastic moduli of mica epoxy composites.

試験片種類		引張り張	覚さ (kg/mm²)	縦弾性	擬彈性係数(×103 kg/mm²)			
		室	温 120°C	窯	温	120°C		
E-1	集成マイカA はがしマイカ	15.0 15.2	13.5 13.7	5.0	-	4.8 6.35		
E-2	集成マイカA はがしマイカ	13.0 11.6	11.1 9.0	5.4		4.62 6.48		
E-3	集成マイカA はがしマイカ	13.1 11 <i>.</i> 3	11.5 12.7	4.8	-,	4.96 8.03		
E-4	集成マイカA はがしマイカ	12.0 14.0	5.6 6.2	4.3	_	3.6 6.8		

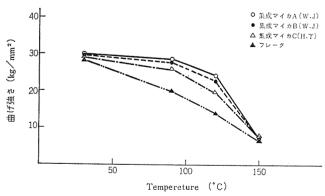


図 12. マイカエポキシ 複合絶縁物の曲げ強さ一温度特性 (E-1 樹脂)

Temperature dependence of flexural strength of mica epoxy composites (sample E-1).

図 12. は マイカ 材料を 種々変えたものの曲げ強さ を E-1 の 含浸 樹脂を用いて測定した結果である。図からも解るように、集成マイカ A, Bの水 ジェット 法による集成 マイカ 原箔の方が高い曲げ強さを与 える。したがって マイカ 材料の選択は一つの大きな要因となり、マイ カリン片の大きさに力学的最適粒度分布が存在することがう かがわ れる。その他の要因としては、粒径、リン片の厚さ、 表面状態、結 晶構造など種々の要因が考えられ、含浸樹脂との相互作用ともあい まって集成 マイカ はくの選択を複雑なものにしている。 材料選択に は電気的性質における最適条件と合わせて最終選択がなされるべき である。

3.3 電気的性質

集成 マイカ、エポキシ 樹脂複合組織板の絶縁破壊の強さを表 4. に示 した。この組織板に用いた樹脂は E-4 であり、 集成 マイカ は水・ジ ェット法粉砕のもの2種、 焼成法のもの1種で、 試験法と しては JISK-6911 に従い油中で行なったものである。この結果から集成マ イカ を使用する際に厳しい選択が必要となる。すなわち集成 マイカ の 種類によって絶縁破壊の強さの値に大きな差が生じる。 集成 マイカ はリッ片の形状、大きさによって特性値への影響が大きく前記の機 械的性質とのかね合いが重要である。

集成 マイカ・エポキシ 樹脂複合物の耐部分放電性につい て も 樹脂単 体、あるいはその他の充てん物(例えば シリカ等)を加えたものに 比べ耐 コロナ性寿命が 10~100 倍程度向上することを確認している。

誘電的性質についても マイカ を充てんすることにより誘電率・ 誘 電損失値が飛躍的に向上することも知られており、 集成 マイカ 充て ん エポキシ 樹脂組成物はすぐれた絶縁体となり得る。

3.4 熱的性質

図 13. に 25×25×3 mm の マイカエポキシ 複合絶縁物を 200°C の空 気中で加熱したときの重量減少率を示す。 図 14. に示した 樹脂板 のみの重量減少率に比べてかなり小さな値を示している。加熱重量

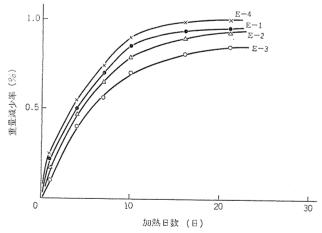


図 13. マイカエポキシ 複合絶縁物の加熱減量特性(加熱温度 200℃, 試料寸法 25×25×3.3 mm) Weight loss curves of mica epoxy composites as a

function of thermal aging at 200°C.

表 4. マイカエポキシ 複合絶縁物の絶縁破壊強度 (E-4 樹脂) Dielectric strength of mica epoxy composites (sample E-4).

集成マイカA (木・ジェット法)			集成マイカB (水・ジェット法)					集成マイカC (鋭成法)			
厚 き (mm)	破壞電圧 (kV)	耐電圧 (kV/mm)	破 壞 電 圧 (kV/層)	mm	kV	kV/mm	kV/商	mm	kV	kV/mm	kV/層
0.618	35.99	58.21	7.20	0.562	22.4	40.00	5.21	0.502	45.7*	91.34*	11.45*

注) 20 点平均值 *: Flash over

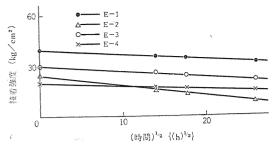


図 14. マイカエポキシ 複合絶縁物の 200°C における接着強度の 熱劣化特性 (測定温度 25°C)

Adhesive strength of mica epoxy composites as a function of the square roat of aging time at 200°C (measuring temperature : 25°C).

減少は拡散律速反応に支配されており $^{(10)}$, これより求めた E-4 の 200° C における速度定数は $2.9\times10^{-2}\frac{(\text{mm}\cdot \%)^2}{\text{h}}$ であり、樹脂板の値に比べて約 $\frac{1}{16}$ になっている。また、活性化 ± 2.4 も 51 kcal/mol であり、樹脂板の 3.4 倍の値を示している。

図 14. に 200℃ で熱劣化させたときのマイカエポキシ 複合絶縁物の接着強度を示す。熱劣化中の接着強度は劣化時間の平方根に比例して減少しているが、厳しい試験条件にもかかわらず劣化割合は小さく、すぐれた耐熱性を有していることがわかる。

4. モデルコイルの特性

4.1 短時間特性

各種 エポキーシ 樹脂・硬化剤・硬化促進剤を用いて 開発した 含浸樹 脂4種類および水 ジェット 法による集成 マイカ と,ポリエステル 不織布と を含浸樹脂に最適の エポキシ 系 マイカボンド によりはり合せて製作した 集成マイカテープを使い、 各々の含浸樹脂に最適の絶縁処理法により、 絶縁厚さ 4.26 mm の モデルコイル を試作し、熱劣化前後の電気的性質 を測定した結果を表 5. に示す。tan δ は 60 Hz, 0.5 kV/mm で測 定し, コイル のふくれは コイル の寸法変化から求めた。 ⊿tan ð は 5 kV/mm における tan δ と 0.5 kV/mm における tan δ の 差である。 コイル 製作後の Δtan δ はいずれの含浸樹脂の場合も非常に小さく, ポイドを含まないすぐれた絶縁組織が得られていることを示してお り、また、155℃ における tan δ 値も小さく、 誘電損による温度上 昇の懸念がないことを示している。180°C の空気中で加熱劣化させ た モデルコイル の tan δ 値は初期値よりやや低下しており、 硬化が 少 し進んでいるように思われる。 ⊿tan δ および コイル 寸法の変化につ いても、厳しい熱劣化温度、高電界下における試験条件を考慮する と, 非常に優秀な特性を示している。

4.2 熱サイクル試験

絶縁組織を評価する場合,実際の運転状態に似た条件で加速試験 を行ない,寿命を推察することは重要なことであり,絶縁組織を変 更する場合の判定基準の一つになると思われる。今回開発した集成 マイカエポキシ 絶縁の性能を評価するため,全長 1.8mの モデルコア 内に コイル をそう入し,ヒートサイクル 試験を行なった。 試験条件は図 15. に示すように加熱 50 分、冷却 30 分すなわち 80 分を 1 サイクル とし, 最高温度は 1,000 サイクル までが 160℃, 1,000 から 2,000 サイクル まで が 180°C, 2,000 から 3,000 サイクル までが 200°C である。(ただし, 含浸樹脂 E-2 の場合は 0 から 3,000 サイクル まで 160℃ である)。温 度上昇は導体に電流を通じ、モデルコア に ヒータ を組込むことにより行 ない,冷却は モデルコア を水冷し,コイル を強制空冷することにより行 なった。 この ヒートサイクル 試験は実際の機械が遭遇する条件に比べて 非常に厳しいものであり、コイルの絶縁組織が受ける応力変化に耐え るためには、すぐれた機械強度と耐熱性を有していなければならな い。 図 15. に t-トサイクル 中の ⊿tan δ の変化を示すが, 今回開発 した絶縁組織はいずれも非常に優秀であることがわかる。さらに、 これらの絶縁組織について、3,000 サイクル 終了後に 耐電圧試験を行 なうと,初期値に対する低下率はいずれの場合も 1.3 % 以下であり, 非常に優秀であった。

5. む す び

発電機の大形化に伴い, コイル 絶縁に対する信頼性の要求はますま

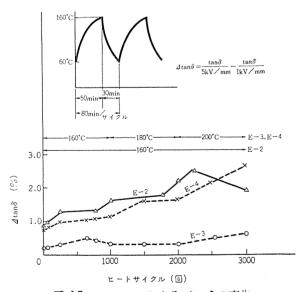


図 15. ヒートサイクル による ⊿tan δ の変化 Change in ⊿tan δ during heat cycling.

表 5. モデルコイル による集成 マイカエポキシ 絶縁組織の初期および熱劣化特性 Loss tangent tip up and swelling of model coil during thermal aging at 180°C.

	初)	V)	値	180°C における熱劣化特性						
	25°C		105°C	105°C 155°C		8 日 後			16 日 後		
	tan δ (%)	Δtan δ (%)	tan δ (%)	t 1 n δ (%)	tan δ (%)	Δt 3n δ (%)	ふくれ (mm)	tanδ (%)	⊿tanδ (%)	ふくれ (mm)	
E-1	0.38	0.00	1.60	5.23 ·	0.32	0.15	0.011	0.32	0.22	0.014	
E-2	0.47	0.08	1.19	6.64	0.42	0,60	0.050	0.45	0.75	0.067	
E-3	0.48	0.00	1.05	4.37	0.47	0.24	0.025	0.47	0.26	0.028	
E-4	0.33	0.15	1.50	3.01	0.21	0.26	0.030	0.21	0.32	0.033	

 $\varDelta \tan \delta = \frac{\tan \delta}{5 \, kV/mm} - \frac{\tan \delta}{0.5 \, kV/mm}$

す厳しくなってきた。これに対処するため、当社では各種 エポキシ 樹脂、硬化剤、硬化促進剤および絶縁処理方式をあらゆる観点から検討した結果、発電機の コイル 絶縁に最適の エポキシ 系含浸樹脂を 4 種類開発した。さらに、主絶縁壁としてのマイカについても、従来のはがしマイカに換わりうる集成マイカ 材料をあらゆる観点から検討し、新しい集成マイカ 材料の開発に成功した。 これらの合浸樹脂と集成マイカ は材料単体はもちろんマイカエポキシ 複合絶縁物の場合にもすぐれた特性を示すことがわかった。

含浸樹脂のすぐれた含浸性および集成ってかのすぐれた浸透性は各々に最適の絶縁処理方式を用いることによりまていの全く無いコイルを製作することができ、これらのコイルは tan 8 の電圧特性、熱安定性、ヒートサイクル性、機械的性質が非常にすぐれていることがわかった。以上述べた絶縁方式の中にはすでに実機に採用されているものもあり、さらにまた、次代のより高度の信頼性を有する絶縁方式を開発するための基礎的資料になるものと信ずる。

(昭和 49-1-9 受付)

参考文献

- (1) 石黑, 伊佐山: 三菱電機技報, 30, No. 5, 329 (昭31)
- (2) S. Hirabayashi, K. Shibayama, S. Matsuda, S. Itô:第11 回 EIC (1973)
 - (3) 柴山, 進藤:日本化学会第28春季年会(昭48)
 - (4) 柴山, 岡橋, 二口:日本化学会第29秋季年会(昭48)
 - (5) 伊藤, 岡橋:工業化学雑誌, 71, No. 7, 1,099 (昭 43)
 - (6) 岡橋, 北川、柴山:日本化学会誌、投稿中
 - (7) 岡橋, 林, 柴山: 日本化学会 第29 秋季年会(昭48)
 - (8) 岡橋, 林, 柴山:三菱電機技報, 47, No. 5, 547 (昭 48)
 - (9) 特公昭 45-26125
- (10) 并本, 森本:工業化学雑誌, 66, 297 (昭 38)
- (11) T. B. Lewis, L. E. Nielsen: J. Appl. Polmer Sci., 14, 1,449 (1970)
- (12) E. H. Kerner: Proc. Phys. Soc., 69 B, 808 (1956)
- (13) 柴山, 飯坂, 北川: 高分子化学, 30. No. 337, 295 (四 48)
- (14) 岡,中田:固体誘電体論(昭35),岩波書店

回転機巻線の機械的諸問題の検討

村上 晃*・二川 暁美*・山崎 真治*・川上 剛**

Investigation of Mechanical Problems on Stator Windings

Central Research Laboratory Akira Murakami • Akemi Futakawa • Shinji Yamasaki Manufacturing Development Laboratory Takeshi Kawakami

There is a trend that external mechanical force working on the windings of rotating machines increases with the enlargement of their single unit capacities and with the reduction of the size and weight. This makes it an important problem to investigate the strength of stator windings from the mechanical viewpoint. Under the circumstances a series of meticulous studies have been made relative to the mechanical problems of the stator windings referred to. This article introduces the outlines of the above outcomes, which cover mechanical problems of the stator windings in question, basic concept for the study, evaluation on the mechanical properties of their constructing materials and questions incidential to this evaluation, investigation on mechanical behavior and breakdown mechanism of the windings from the viewpoint of composite structure, study on the thermal stress produced on the winding in operation and stress on the end winding during short circuit and strength to withstand them.

1. まえがき

回転機の単機大容量化,小形軽量化に伴って,回転機の使用条件 もますます厳しくなり,回転機巻線には,従来にもまして優れた絶 縁特性とより高い信頼性が要求されるようになってきた。

回転機巻線の機能および特性は、従来より電気的、化学的、熱的 観点から、種々の検討がなされている。しかし回転機巻線に発生す る損傷は、機械的要因によるものが大部分であるにもかかわらず、 機械的観点から回転機巻線の強度を検討した報告は比較的少ないの が現状である。回転機の単機大容量化、小形軽量化に伴って、回転 機巻線に作用する機械的外力もますます増大する傾向にあるので、 機械的観点から回転機巻線の強度問題を検討しておくことが一つの 重要な課題となる。

当社では、従来より熱サイクル試験、熱劣化試験、疲労試験、あるいは総合機能試験など(I)~(5)を実施して、回転機巻線の機械的強度を評価してきた。さらに回転機巻線の機械的強度を定量的に評価する技術の確立を目的として、回転機巻線の力学的挙動と強度の問題についてより精密な検討を行なってきた。本文はその概要を述べたもので、機械的強度問題に対する基本的考え方、巻線構成材料の特性の評価法、複合構造体としての観点からの回転機巻線の力学的、強度的検討、ならびに回転機のか(稼)動時に回転機巻線に生じる変形と応力のは握と強度的検討などを紹介する。

2. 回転機巻線の機械的問題に対する基本的考え方

回転機巻線の機械的強度問題を要因別に分類すると次のようになる。

- (1) 回転機巻線が複合構造体であることに起因して生じる熱応力の繰返しに対する強度
- (2) 回転機巻線の軸方向の伸縮が、スロットや巻線端部の バインド などで外的に拘束されて生じる熱応力の繰返しに対する強度
- (3) 短絡時の大きな電磁力による巻線端部の曲げやねじり変形 に対する強度
 - (4) 定常運転時に巻線端部に生じる振動による応力の繰返しや

バインド あるいは スペーサ との際擦・摩耗に対する強度

(5) 固定子 スロット 内での 電磁振動による スロット 壁面との 摩擦・摩耗に対する強度

熱変形・熱応力に対する強度(1),(2)では、繰返し熱応力に対する回転機巻線の機械的強度を定量的に評価すること、および熱変形に対する適切な巻線端部の支持構造を選定することなどが課題となる。この課題の検討では、回転機巻線の熱変形・熱応力を定量的には握し^{(6)~(10)},この熱応力による破壊機構やその繰返し作用に対する強度^{(7),(11)~(14)}を回転機巻線の機械的強度と関連づけて、さらに定量的に検討しておくことなどの問題がある。

短絡時の巻線端部の強度(3)では、短絡時に巻線端部に機械的 損傷が発生しないような適切な支持構造を選定する課題があげられ る。短絡時の過大な電磁力により回転機巻線に破損が生じた事例は 数多く報告(15)(16)され、巻線端部の振動を高速度カメラでは握するこ とが試みられている(17)(18)。しかし機械的強度を検討するためには、 短絡時に巻線端部に生じる応力を定量的には握する必要があるが、 これに関する報告(15)~(21)はほとんどないのが現状である。この課題の検討では、短絡時に巻線端部に生じる変形と応力の測定技術の 開発、電磁力の解析結果(22)~(24)と関連させて巻線端部に生じる変 形と応力の解析技術の開発、ならびに外力に対する回転機巻線の力 学的変形挙動と破壊機構をは握しておくことなどが問題となる。

また定常運転時の巻線端部 および スロット内での振動 (4), (5) では、巻線端部および スロット内での適切な支持構造の選定が課題となる。との課題の検討では、定常運転時に巻線端部および スロット内で回転機巻線に生じる振動状態のは握⁽²⁵⁾およびこの振動による スロット 壁面や巻線端部の バインド および スペーサ との摩擦・摩耗特性のは 握が重要な問題になる。当社ではこの問題については検討している 段階である。

以上述べた回転機巻線に対する機械的問題を、力学的、強度的観点から、共通基本問題として大別すると次のようになる。

- (1) 回転機巻線の各構成要素の機械特性のは握
- (2) 複合構造体としての観点から、外力に対する回転機巻線の 力学的挙動および破壊機構の解明

- (3) 回転機の実働状態に回転機巻線に生じる変形や応力の測定 技術の開発,ならびに電磁力の解析結果と関連させた回転機巻線に 生じる変形や応力の解析法の確立
- (4) 各構成要素の強度、複合構造体としての強度と実働状態で 回転機巻線に生じる応力の比較による定量的な強度的検討

筆者らは、上記の基本問題に関し一連の検討を行なってきたので、 その概要を以下に紹介する。

3. 回転機巻線の構成材料の機械的性質のは握

回転機巻線は種々の材料で構成される複合構造体であるとみなされる。回転機巻線の構成材料の機械的特性をは握することは、新しい構成材料を実績のある従来の材料と定量的に比較選定するうえで、また回転機巻線に生じる変形や応力を定量的に推定するうえで重要である。表 1. と表 2. に絶縁物およびレジンの特性の一例を示す。これらの諸特性の測定上の問題点および試験法の概要を以下に述べる。

3.1 引張強さ、縦弾性係数、伸び、線膨張係数

絶縁物の引張強さ、縦弾性係数、伸び、線膨張係数などの機械特性は、基本特性であるので絶縁物の開発時のルーチンテストでは握するようにしている。ことでは、絶縁物を構成するマイカ、ボンド、バッキング材、レジンなどの適切な組合せ条件を、使用温度範囲で検討している。これらの諸特性は、絶縁物単体として巨視的には握している。これは、これらの諸特性が数パーセントのばらつきの範囲で求められること、また複合構造体としての回転機巻線の力学的挙動も、絶縁物を単体とみなしてよく説明付けられることなどの理由によるものである。

3.2 せん断強さおよび横弾性係数

せん断強さの試験法としては、重ね合せ継手による試験法と突き 合せ継手による試験法が知られている。そして後者の試験法で得ら れるせん断強さは前者のそれの 1.5~2.0 倍になることが報告されて

表 1. 絶縁物の機械的性質の比較 Comparison of typical mechanical properties of insulations.

	ポリエスラ	テル系樹脂	エポキシ系樹脂		
	25°C 80°C		25°C	120 °C	
引 張 強 さ (kg/mm²)	6.7 ~10.2	5.7 ~7.8	11.5 ~21.5	7.8 ~19.6	
縱 弾 性 係 数 ×103(kg/mm²)	3.9 ~ 6.0	2.0 ~4.5	5.6 ~ 7.5	5.2 ~ 7.0	
疲れ 強さ (kg/mm²)	2.0 ~ 3.0		3.5 ~ 4.5	3.2 ~ 4.3	
へき開強さ ×10º(kg)	0.21 ~ 0.34	0.18~0.44	0.28~ 1.53	0.37~ 1.7	
線 膨 張 係 数 ×10-5(1/°C)	0.6~	-0.9	0.7~	~1.1	

表 2. 含浸 レジンの 機 械 的 性 質 の 比 較 Comparison of tipical mechanical properties of resins.

	ポリエス:	テル系樹脂	エポキシ系樹脂		
	25°C	80°C	25°C	120°C	
せん断強さ (kg/mm²)	0.4~1.1	0.1~0.6	1.1~ 3.1	0.9~ 2.8	
橫彈性係数 (kg/mm²)	4.6~7.2	3.4~6.2	15.4~23.4	14.0~21.6	

いる(26)(27)。 回転機巻線の機械的強度としてせん断強さが問題になるのは、 導体と接着層の間の レジン あるいはその近傍の 絶縁物のせん断強さである。 この部分のせん断応力の分布状態から推察すると、突き合せ継手による試験法より、 むしろ重ね合せ継手による試験法の方が合理的であると考えられる。 重ね合せ継手による試験法では、長さ方向にせん断応力の分布を生じ、 端部では著しくせん断応力が集中するので、これを適格には握する必要がある。 当社では、これらの問題点を解決し、せん断試験法を ルーチン化した。 そしてこの試験法で求めたせん断強さを導体と絶縁物の間の接着層の破壞強度の検討に導入し、回転機巻線の接着層のせん断応力による破壞現象をよく説明し得ることを確認している。

図 1. は当社で採用している 重ね合せ継手方式によるせん断強度 試験の状況である。 重ね合せ部の長さは 10~50 mm の範囲で 5 段 階に選定し、試料はすべて回転機巻線の含浸行程の中に含め、回転 機巻線の製作条件と同一条件で製作している。

3.3 疲れ強さ

回転機卷線には、回転機の運転・停止による熱応力や振動による 応力が繰返し作用する。このため絶縁物の疲れ強さをは握すること は、絶縁物の開発過程で定量的な選定を行なううえで、また実働状 態に対する回転機巻線の機械的強度を評価するうえで重要である。 絶縁物の疲労試験は次の二つに大別される。その一つは絶縁物単体 で疲労試験する方法(17)であり、他の一つはテストバーを用いて、その 一端を固定し、他端にある周波数、振幅の振動を加えて試験する方 法である(11)、(12)、(28)。前者の試験法は 絶縁物を構成する 材料間の接

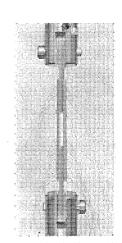


図 1. 接 着 強 度 試 驗 Measurement of shearing strength on bonded lap joint.

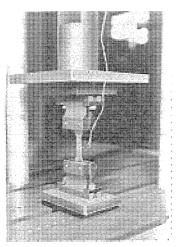


図 2. 絶縁物の疲れ試験 Insulation fatigue strength evaluation test.

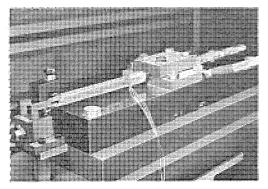


図 3. テストバーによる絶縁物の疲れ試験 Insulation fatigue strength evaluation test on test bar.

着強さが高いものについては有利であるが、接着強さが低い絶縁物では、その構成材料間ではく離を生じるため、結果に大きなばらつきを生じる。一方後者の方法では、長さ方向に応力分布を生じ、しかもせん断応力が重畳して作用する状態で試験されるので、繰返し応力による破壊機構を検討するには難点がある。しかし絶縁物相互間の疲れ強さの比較試験としては有利であるので、本試験法を絶縁物の評価試験の一環にとりいれている。 図 2. は絶縁物単体での疲れ試験の状況を、図 3. は テストハーによる疲れ試験の状況を示す。

3.4 へき開強さ

絶縁物を構成する材料間の接着強度は、上述のせん断試験で得られるが、高度の測定技術が要求されるために、さらに簡便な方法としてへき開試験が利用されている(IT)。この試験法は JIS-K 6911 および ASTM-D 229-68 に規定されており、 当社においても この試験法に準じて試験を行なっている。しかし絶縁物が非常に多くの薄い構成材料の複合構造体であるため、圧縮荷重を負荷すると、マイカはくや パッキング 材が圧縮され、へき開強さにこれらの材料の圧縮特性が大きく介入する。このため本試験法で各構成要素間の接着強度をは握することがむずかしく、本試験法はあくまで比較試験を目的としてとりいれている。

4. 複合構造体としての回転機巻線の力学的挙動のは握

回転機巻線の各構成要素の機械的特性を基準に、複合構造体としての観点から回転機巻線の機械的強度を評価しようとする際、次の二つの問題がある。その一つは外力に対する回転機巻線の変形挙動を、複合構造体としての観点から解明し、回転機の実働状態に回転機巻線に生じる応力や変形を定量的に推定することが可能な基礎的知見を集積しておくことである。他の一つは各構成要素の機械的強度と複合構造体としての回転機巻線の機械的強度を関連づけ、回転機巻線の破壊機構を解明しておくことである。

従来より回転機巻線の機械的強度の検討が重要な課題の一つになっているにもかかわらずほとんど定量的な検討がなされていない。 これは従来の熱サイクル試験、機能評価試験あるいは疲労試験などが、使用実績のある回転機巻線材料との比較試験を中心に定性的な検証に重点を置き、複合構造体としての回転機巻線の力学的挙動がほとんどは握されていなかったことによるものと考えられる。

筆者らは、上記の点にかんがみ、回転機巻線の機械的強度問題を 定量的に検討するために、複合構造体としての観点から回転機巻線 の力学的挙動を検討し、応力と構成材料の機械的特性を関連させて、 機械的な破壊機構とそれに伴う電気特性の変化について基本的な検 討を加えたので、その概要を以下に述べる。

4.1 導体と絶縁物の間の力の伝達機構(28)~(31)

回転機巻線は導体と絶縁物で構成される複合構造体であり、しかも導体は数十本の素線を束ねて構成され、かつ転位が施されたものもある。回転機巻線に生じる熱変形や熱応力の発生機構を解明するためには、導体と絶縁物の間の力の伝達機構をは握しておくことが一つの重要な課題となる。この課題の検討では、回転機巻線の複合構造体としての力学的モデルの設定、とりわけ絶縁物が単一部材とみなせるか、また導体と接着層の間の接合状態が接着接合か、摩擦接合か、あるいは両者の中間的な状態かなどを解明し、複雑な形状をした接着層の力学的取り扱い方を検討しておく問題がある。

とのため長さ約1.2 m の真直 テストハー を用いて,図4. に示すように、導体の両端に軸方向の荷重を加えて、絶縁物に生じるひずみの

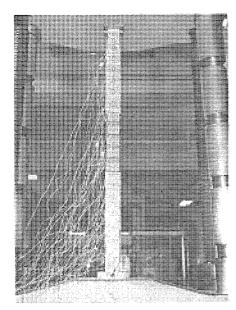


図 4. 導体と絶縁物の間の力の伝達機構の検討 Examination on load transmission mechanism between conductor and insulation.

分布状態や破壞の様相を調べた。本実験では、接着層の厚さが比較的均一な中実導体を有する テストバー を基準に、素線を数十本束ねて構成した導体を有する テストバー を対比して検討した。これと併行して テストバー に生じる応力分布を解析し、この結果と実験結果を対比させて、導体と絶縁物の間の力の伝達機構を検討した。さらに応力の発生状態と各構成材料の強度および電気特性の変化を関連させ、テストバー に生じる破壊の様相を検討した。

その結果,回転機卷線の導体と絶縁物は接着層を介して接合されているとみなされること,熱応力は本結果を拡張して解析し得ることなどが判明した。また回転機巻線の応力におよぼす構成要素の機械的特性や素線構成,温度特性の影響などがは握され,構成要素の機械的強度と破壊の様相,およびそれに伴う電気特性の変化がは握された。また本検討で得られる応力分布は熱応力の分布と定性的によく一致し,この応力分布を定める定数を実験的に求めると,それを熱応力の計算に導入し得ること,また接着層の厚さは一様なみかけの厚さとして,力学的に取り扱い得ることなどの基礎的知見を得た。

4.2 曲げ特性(21)(30)(31)

回転機の短絡時あるいは定常運転時には、電磁力による曲げモーメントが回転機巻線に作用する。 したがって曲げモーメントによる回転機巻線の変形挙動を解明しておく必要がある。ここでは、各素線間の接合状態、導体と絶縁物の間の接合状態、絶縁物を構成する材料間の接合状態などを解明し、また回転機巻線の機械的強度を各構成材料の機械的強度と関連づけて、破壊機構を十分検討しておく問題がある。

このため長さ約1.2mの真直 テストバーを用いて、4点荷重方式により曲げ特性の検討を行なった。図5.は曲げ試験の状況を示したものである。荷重の負荷方法としては、中央集中荷重や片持ちはり(梁)としての負荷方法も考えられるが、これらの負荷方法では、テストバーに生じる応力分布が長さ方向に不均一になること、曲げ応力にせん断応力が重畳して作用することなどの欠点があり、テストバーに生じた破壊を応力と関連づけて検討することがむずかしい。そこで筆者らは、4点荷重方式による実験法を確立し、中央部の曲げ応

図 5. 曲 げ 変 形 挙 動 の 検 計 Examination on bending behavior of test bar.

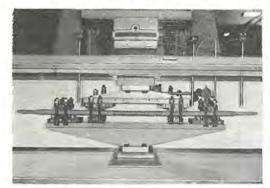


図 6. 疲れ特性の検討 Examination on fatigue characteristics of test bar.

力の一様な部分で応力および電気特性の測定を行ない、曲げ応力、 曲げ剛性および電気特性の変化と破壊の様相との関係を調べた。そ して複合構造体としての観点から、回転機巻線の変形挙動を解析す る手法を確立し、破壊の機構を明らかにすることができた。

4.3 疲れ特性(20)(21)(31)

前述のように、絶縁物の疲れ強さは、絶縁物単体による疲れ試験とテストパーによる疲れ試験で検討し、従来から実績のある絶縁物との比較を中心に繰返し応力に対する強度の検討を行なっている。しかし絶縁物に繰返し応力を作用させた場合の曲げ剛性の変化や破壊の様相をは握しておくことは、熱応力の繰返し作用や振動による曲げ応力の繰返し作用などに対する回転機巻線の機械的強度を評価するうえで重要な課題となる。

中央集中荷重や片持ちはり形式による試験法では、曲げ応力が軸 方向に変化し、かつせん断応力が重畳して作用するので、応力と破 壊の様相との関係をは握し難い問題がある。そこで本検討において も、曲げ特性の検討と同じように、図 6. にみられるような 4 点荷 重方式による試験法を確立し、曲げ応力を パラメータ として曲げ剛生 や電気特性の変化と繰返し回数の関係を求めた。

この結果、ある曲げ応力以上では、繰返し回数の増加とともに、曲げ剛性が徐々に低下すること、また曲げ剛性が初期値の65~75%程度になると、絶縁物表面にき裂が生じ、破壊電圧が初期値の20~30%に低下すること、さらに回転機巻線の絶縁物にも引張り強さの30~40%に一種の疲れ限度が存在し、それ以下の応力を繰返し作用させても、剛性はほとんど低下せず、電気特性も実用上問題にならない程度しか変化しないことなどの基礎的知見を得た。

以上三つの力学的・強度的検討により、複合構造体としての観点 から、回転機巻線の力学的挙動が解明され、またその破壊機構も応 力の発生状態や構成材料の強度あるいは電気特性の変化と関連づけては握された。この結果、回転機巻線の外力に対する変形挙動を定量的に推定することが可能となり、また電気特性の変化を追跡することにより、機械的損傷の発生状態を推測することが可能となった。

5. 実機モデルによる回転機巻線の機械的強度のは握

以上の検討結果にもとづいて、回転機の実働状態での回転機巻線の機械的強度を検討する場合、次の二つの問題がある。その一つは、回転機の実働状態で、回転機巻線に作用する外力や変形および応力をは握することである。他の一つは、上記の基礎的検討で得られた回転機巻線の強度と実働状態で回転機巻線に生じる応力を対比させて、回転機巻線の機械的強度を検証しておくことである。このため筆者らは実機を模擬したモデルや実験用回転機を用いて、これらの強度問題について検討した。

5.1 熱応力・熱変形の発生機構の解明と熱サイクルに対する強 度の検討⁽⁸⁾⁽¹⁰⁾

回転機巻線に温度変化が生じると、回転機巻線は異種の物理的性質を有する導体と絶縁物で構成される複合構造体であるがために熱応力が発生する。ここでは、次の三つの問題をとりあげた。すなわちその一つは上記の基礎的検討結果にもとづいて、熱応力の発生機構を解明し、熱応力におよぼす諸因子の影響を定量的には握することである。他の一つはこの熱応力によって回転機巻線の破壊機構を解明することである。また他の一つは熱応力の繰返し作用に対する回転機巻線の強度を前述の基礎的検討で得られた回転機巻線の疲れ強さと比較して定量的に検討しておくことである。

そとで長さ約2.2mの真直な回転機巻線を用いて、これらの問題を検討した。図7. に実験装置の外観を示す。回転機巻線は軸方向に自由に伸縮し得るように配慮し、回転機巻線が複合構造体であることに起因した熱応力の発生機構が解明できるようにした。加熱は通電電流で行ない、冷却は巻線の内部に設けたペントチューブに送風して行なった。実験では、回転機巻線の温度変化、熱変形および熱応力を測定し、この結果と解析結果を対比して熱応力の発生機構や熱応力におよぼす構造因子の影響を検討した。また回転機巻線に熱サイクルを与えて、実機の実働条件よりかなり厳しい実験条件で、熱応力の繰返しによる破壊の様相を調べ、破壊に伴う電気的特性の変化を調べた。その結果、絶縁物にテープセパレーションが発生するまで、あるいは導体と絶縁物の間の接着層に破壊が生じるまでの機械的・電気的特性の変化を定量的には握することができた。

図 7. 熱 サイクル 試験装置 Thermal cycle test equipment.

5.2 熱変形・熱応力におよぼす外的拘束力の影響(0)

回転機巻線は固定子スロットにそう(挿)入され、かつ巻線端部では 巻線相互間あるいは コイル 支えとの間で バインド され、 さらに先端部 では、上口と下口の巻線が相互に接続されている。 このためこれら の拘束力によって回転機巻線の熱変形が拘束され、 これに起因した 熱応力を発生する。 したがって熱応力の検討では、 これらの外的拘 束力による熱応力の発生挙動を検討しておくことがもう一つの重要 な課題となる。

このため実機の回転機巻線と同じ形状をした供試試料を長さ4mの模擬スロットにそう入し、実機同様に巻線端部にバインドを施したモデル実験装置を製作した。この実験装置により巻線端部に正規のバインドを施した場合、バインドのない場合、バインドの数や場所を順次変化させた場合に、回転機巻線に生じる熱変形および熱応力の変化を検討した。図8. は巻線端部の上口と下口の巻線の接続部付近に

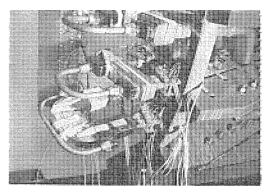


図 8. 巻線端部での熱応力の測定 Thermal stress measurement at end turn.

図 9. バインドの剛性実験 Binding rigidity test.

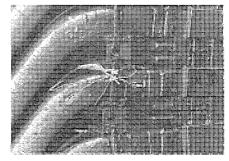


図 10. 巻線端部での応力測定 Stress measurement at end winding.

図 11. 巻線端部の変位の測定 Displacement measurement at end turn.

生じる応力を測定している状況である。またこれらの実験と併行して、巻線端部の バインド 部や上口と下口巻線の接続部の モデル を製作して、回転機巻線の熱変形におよぼす バインドおよび上口と下口巻線の接続部の拘束状態を調べた。図 9. は バインド を引張る方向に荷重を負荷してその拘束状態を調べている状況である。

以上の検討により、回転機巻線の熱変形におよぼす スロット 拘束力や バインド 拘束力などがは握され、本検討範囲では、これらの影響はほとんど問題にならないことを明らかにした。しかし、将来の大容量機の出現に備えて、 現在固定子 コアの長さが 9 m の モデル を対象に同様の検討を進めている。

5.3 短絡時に巻線端部に生じる変形と応力(20)(21)

短絡時の巻線端部の変形拳動の検討では、従来から機外より高速度カメラでその振動状態をは握することが試みられている(17)(18)。しかし、巻線端部の機械的強度を定量的に検討するためには、応力の発生状態も十分は握しておく必要がある(19)。 当社では、 短絡時に巻線端部に作用する 電磁力の数値解析法(14)を確立し、 この電磁力が機械的外力として巻線端部に作用した場合の巻線端部の変形や応力を解析するための立体骨組構造解析 プログラム の開発を進めている。しかし巻線端部は非常に複雑な形状をしており、バインドヤスペーサなどの物理定数も非線形特性を有するので、巻線端部に生じる変形や応力を適確には握するには種々困難な問題を伴う。このためこれらの解析的検討と併行して、実験的検討も行なってきた。

短絡時に巻線端部に生じる変形や応力の測定は、解析結果や従来の報告にみられる回転機巻線の破損箇所を参考に、とくに問題となりそうな箇所を対象に行なっている。これらの測定では、高電圧、高電磁場での変位や応力の測定技術の開発や、巻線端部の変形の測定法の開発などが問題になる。 筆者らは、 ひずみ ゲージ による高電磁場での応力測定技術を確立し、また変位の測定法も、 従来の高速度 カメラ による測定法に加えて、 ひずみ ゲージ 応用形変位計による変位測定法も開発し、巻線端部の変形を直接 アナログ 量として検出する手法を確立した。

筆者らは、これらの測定技術を用いて、21,000 kVA の実験用発電機を対象に、100 %定格電圧までの短絡電圧で、短絡時に巻線端部に生じる変形および応力を定量的には握し、回転機巻線の機械的強度やその構成材料の強度と比較して、巻線端部の機械的強度を定量的に検討した。その後、さらに容量の大きな224,000 kVA 機についても同様の実験を行ない、回転機巻線の短絡時の機械的強度について検討した。図10. は巻線端部の応力測定の状況を、図11. はひずみ ゲージ 応用形変位計による 巻線端部の先端の 変位の測定状況を、図12. は高速度 カメラによる巻線端部の変位の測定状況をそれぞれ示したものである。

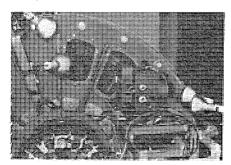


図 12. 高速度 カメラ による巻線端部の変位測定 Displacement measurement of end winding with high speed camera.

6. む す び

回転機の単機大容量化、小形軽量化に伴って、回転機巻線に作用する機械的外力はますます増大する傾向にある。当社では従来より回転機巻線の疲れ強さ、熱応力の繰返しに対する強度、熱劣化特性、あるいは短絡時の巻線端部の強度などの機械的強度に関する検討を定性的な観点から実施してきた。しかし将来の回転機の大容量化に備えて、従来のこれらの評価法に加えて、機械的観点からより精密な一連の検討を行なった。これらの検討により、回転機巻線を構成する材料の機械的特性がは握され、またその試験法が確立された。また複合構造体としての観点から、回転機巻線の力学的変形挙動と破壊機構がは握された。さらに回転機の実働状態に回転機巻線に生じる熱応力や短絡時に巻線端部に生じる変形や応力が定量的には握され、それらの測定法が確立された。そして回転機の実働状態に回転機巻線に生じる応力と回転機巻線の強度が定量的に比較検討することが可能となった。その結果、回転機巻線ひいては回転機の信頼性を向上させる基礎的知見が集積された。

参考文献

- (1) 原, 川上, 松田, 伊藤: 三菱電機技報, 40, 11, 1,731 (昭 41)
- (2) 柴田, 伊藤: 三菱電機技報, 40, 6, 969 (昭 41)
- (3) 坂田, 倉屋: 三菱電機技報, 40, 7, 1,102 (昭 41)
- (4) 中村, 石川, 犬塚: 三菱電機技報, 42, 2, 379 (昭 43)
- (5) 柴山, 鈴木: 三菱電機技報, 43, 3, 436 (昭 44)
- (6) 村上, 土方, 二川, 山崎: 昭和44年度 電気四学連大, No. 552
- (7) 松延, 磯部, 岡:電学論誌, 47-A3, 1, 18 (昭 47)
- (8) 村上, 二川, 山崎: 昭和 47年 電気学全大, No. 175
- (9) 松延, 磯部: 絶縁材料研究会資料, IM-73-11 (昭 48)
- (10) 村上, 二川, 山崎, 川上: 絶縁村料研究会資料, IM-73-37 (昭 48)
- (11) A. R. Andersson and Örbeck: IEEE Transactions on Power Apparatus and Systems, PAS-86, 2, 224 (1967)

- (12) O. Wohlfahrt, M. Moravec and B. Doljak: The Brown Boveri Review, 47, 5/6, 352 (1960)
- (13) J. C. Botts and G. L. Mosess: CIGRE Paper, No. 44 (1966)
- (14) A. Wichmann: Siemens-Schuckertwerke A. G., Mulheim/ Ruhr, TF-6614
- (15) W. Beitz: Konstruktion, 21, 12, 461 (1969)
- (16) O. Krauss: Der Maschinenschaden, 43, 6, 213 (1970)
- (17) C. V. Maughan, E. E. Gibbes and E. V. Giaquito: IEEE Transactions on Power Apparatus and Systems, PAS-89, 8, 1,946 (1970)
- (18) J. E. Neal: Ath EI Conference, 69 C 33, EI-4 (1969)
- (19) 福田, 鈴木:電中研依頼報告, No. 66140 (昭 42)
- (20) 村上, 土方, 二川, 山崎: 昭和 46年 電気学全大, No. 471
- (21) 村上,二川,山崎,川上:第34回 絶縁材料劣化研究懇談会, No. 20 (昭 46)
- (22) E. C. Anderson: VDE, 86, 12 (1965)
- (23) J. A. Tegopoulus: Trans. IEEE, PAS-85, 2 (1966)
- (24) 野村:三菱電機技報, 46, 10, 1,129 (昭 47)
- (25) P. Richardson and H. Hawley: Conference Paper, No. C 72 241–3 (1972)
- (26) H. Winter und G. Krause: Aluminium, 30, 10, 669 (1957)
- (27) R. W. Bryant and W. A. Dukes: Brit. Jul. Appl. Phys., 16, 101 (1965)
- (28) 安芸, 松延, 兼子, 芝田, 向井: 日立評論, 49, 6, 682(昭 42)村上, 二川, 山崎: 昭和 47 年 電気学全大, No. 174
- (29) 村上,二川,山崎,川上:第36回 絕緣材料劣化研究懇談会。 No. 23
- (30) 村上, 二川, 山崎, 川上: 昭和 46 年 電気学全大, No. 464
- (31) 村上, 二川, 山崎, 川上:第4回電気絶縁材料 シンポジウム。 V-12

回転機絶縁開発における信頼性解析システム

下地 貞夫*・高倉 康一**・平林 庄司***

Development of Reliability Analysis System for Rotating Machine Insulation

Central Research Laboratory Sadao Shimoji • Kôichi Takakura Manufacturing Development Laboratory Shôji Hirabayashi

As a part of the development of insulation for high voltage rotating machines, a reliability analysing system has been worked out for practical purposes with the object of reliability control such as the design of new insulation structure, its production and the tests. This analysis system is a computor filing system of total data on test samples related to the insulating materials, manufacturing processes and measured values. The advantages of the analysis lies in the ease of registering the data and their correction, the tabulation, the analysis of statistics and simulation, all being the application feasible with the device.

This article reports the composition, function and analysed examples of this system referred to.

1. まえがき

高圧回転機 コイル の絶縁組織には、マイカ はくを主絶縁材料とし、 レジン を含浸し、重合した固体複合絶縁組織が用いられている。

とれらに用いる材料の組合せ、および処理方法は多種多様であり、 材料間の適合性、構造上および プロセス上の要因などが加わって、絶 縁組織の電気的・熱的・機械的などの特性は複雑となる。

また、これらの絶縁組織には、高電圧・熱・振動などの使用ストレス下で、絶縁性能の劣化が少ない良質な絶縁物としての高信頼性や数十年にわたる長期寿命が要求される。

このような要求を満足できる絶縁組織を実現するためには、材料・プロセスなどの製造条件、コロナ・tan &・絶縁破壊電圧 (BDV) などの初期特性(電気特性)、課電劣化特性・熱劣化特性・機械的劣化特性などの絶縁データを信頼性手法に基づいて 解析することが 必要である。

このような回転機絶線開発における絶縁 データの信頼性解析 を 行 なうをめに、

- (1) 多数の サンプルデータ の要因別の分類整理
- (2) 必要な サンプルデータ の サンプリング による各種作表
- (3) 分散分析・回帰分析・多変量解析・Weibull 解析などの統 計処理
- (4) 最適処理条件の 推定 および 絶縁寿命 信頼限界推定のための シミュレーション

などの多くの処理機能をもつ絶縁 \vec{r} –g の電算機 $D_{\vec{r}}$ イリングシステム を 開発し、実用化した $^{(1)(2)}$ 。

この ファイリング システム の特長は,

- (1) 絶縁 データの階層的構造を考慮した複合 キー番号呼出 し方式を構成したことにより、データの登録順序は ランダム でよく、 電算機への入力データの作成および入力が容易である。
- (2) 材料・プロセス・試験評価などの全データを信頼性手法に基づいて正確・迅速に解析し、評価できる。
- (3) 多くの統計解析を 1 回の 5 = 5 で処理し、解析結果の整理・作表が容易である。
- (4) 試験評価データに統計分布の明らかな模擬データを補足し、

加え合せて、データ 構造の解析や特性値の振舞いの シミュレーション が可能である。

などである。

2. 絶縁データの信頼性管理

2.1 絶縁組織の製作評価

絶縁組織の製作・評価の工程は、

- (1) 材料
- (2) プロセス
- (3) 試験評価

の3段階に大きく分けることができる。図 1. に, 高圧回転機絶縁 組織の製作・評価 フローチャート を示す。

これらの3段階について、工程上の主項目を列挙すると、まず、 材料段階では、バッキング・マイカ はく・ボンド などを最適条件で組合せ て製作したマイカテープ、含浸レジン関係および中心導体にマイカテープを 巻くテーピング 工程などが重要な項目である。

つぎに、プロセス 段階では、真空処理を施すしむし 脱気条件、テーピングを終了した サンプルの真空乾燥処理条件、レジン 含浸関係の条件、含浸後のプレス重合硬化とその後の 冷却条件などが 工程管理上の重要な項目である。また、試験評価段階では、まず、コロナ・tan ð・BDV などの初期特性(電気特性)を実測し、材料選択・プロセス条件についてのとの段階までの一次スクリーニングを行なう。つぎの段階として、曲げ・引張り・疲労などの機械的特性、連続加熱および ヒートサイクル による熱劣化特性、連続電圧印加法やステップストレス 法による課電劣化特性などについて、詳細な実験計画のもとに実測し、総合的に評価する。これらは、現実的制約から、ストレス加速によるモデル実験であるが、絶縁組織としての性能の総合的評価法の一部として重要である。これらの試験評価の後に、二次スクリーニングを行なう。そして、最終的に決定された材料・プロセスを用いた試作コイルによる総合機能試験を行なって全開発工程を終了し、製品化へ移行する。

このような絶縁組織の製作・評価 フローチャート に示す各項目は、さらに詳細な要因にまで細分化され、材料・試作・試験評価などの各グループ により実測され、管理されている。これらの項目・要因は、

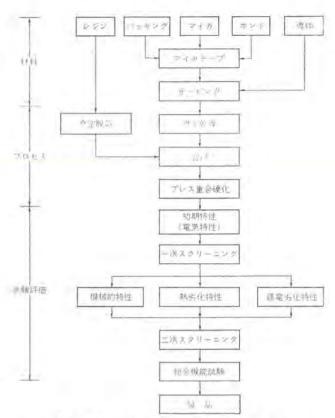


図 1. 回転機絶縁組織の製作・評価 フローチャート Flowchart of manufacturing and evaluating process of rotating machine insulation.

データファイリングシステムへのインブットデータそのものとなる。したがって、 これらのデータは、各ブルーブごとに別個にインブットされるが、電算機の内部で1本のサンブルデータの持つ全データとして整理される。

2.2 テストサンプルデータの整理

高圧回転機絶縁の新方式・新プロセスの開発や絶縁組織の特性改良 のために試作・評価するテストサンプル数は、大小あわせて年間で数千本に達する。これらを前記の3段階分類による項目・要因わけをした信頼性管理項目の要因単位でみるとばく大なデータ数となり、電算機処理が必要である。

テストサンブルデータの整理に用いている方式を図 2. に示す。

電算機ファイリング方式としては、Indexed Sequential File 方式を採用している。前述したように、ファイリングシステムのデータ整理方式の特長は、トリー構造状の複合キー番号呼出し方式にある。これは、データインプットにあたって、全テストサンブルを通じての一連番号のほかに、図 2. (a)に示すように、計画目的・実験規模・材料配合・試作プロセス条件などに対応する実験計画・試作・条件・サンブル番号などを組合せて複合番号とし、図 2. (b)に示すトリー構造状に整理している方式である。この方式により、呼出し条件を多重に組合せた場合の登録データのサンブリングや照合に必要な機能を満たし、試作・評価の結果の整理や試作プロセス間の相違点の確認などを迅速・適確に行なうことができる。

1本のデストサンブルデータは、表 1.の信頼性管理項目表に示すよう に詳細に要因わけされ、現在のところ、材料要因の情報が70gード、 製作プロセス要因の情報が40gード、試験評価の情報が60gードで合 計170gードで構成されている。これらの情報は数値あるいは符号化 されてディスクに記憶されている。また、この情報量は、内容・大き さともに固定したものではなく、開発の進展に応じて新しい情報の

図 2. テストサンブルデータ の整理 Arrangement of test sample data.

表 1. 信賴性管理項目表 Data items of reliability analyses.

	頭 目	DE 129
	D 9 V	種類,温度,粘度,保管条件,化学的特性など
	バッキング	材料, 厚さ, 機械的強度, 保管条件など
	マ イ カ	原ばく(箔)種類, はく寸法など
材料	ポッド	種類, 温度, 粘度, 保管条件, 化学的特性など
(70)	游 体	材料, 寸法, エッジ, 表面仕上, 熱処理, 素線種類, 素 線寸法など
	ナ ー ブ	原ぼく, ポンド, バッキング, 構成,処理,保管条件など
	テーセング	ふん囲気, 張力, 温度, 湿度, 寸法, 重量, 巻回数など
	レジン処理	真空度,温度,粘度,処理時間など
プロセス	真空乾燥	ふん囲気, 真空度, 温度, 粘度, 処理時間など
(40)	含 没	真空度,温度,粘度,時間,加圧条件,位置など
	プレス重合硬化	プレス, 重合温度, 時間, 重合台条件, 冷却法など
	初期特性	組織重圧, 寸法, 外観, ボイド, tanô, BDV, コロナ, Pi, Pie など
	機械的特性	曲げ、引張り、援動、疲労など
試驗評価	熱劣化特性	炉、温度, tan 8, BDV, コロナ, Pil, Pig など
(60)	趣证劣化特性	電圧, 電極, 温度, tan 5, BDV, コロナ, Pi ₁ , Pi ₂ 寿命時間など
	総合機能評価	電圧、温度、変形、ヒートサイクル、 $ an \delta$ 。 BDV 、 寿命時間など

追加や不要になった情報の削除が可能である。

2.3 信頼性データの収集と解析

このようなインプット情報 すなわち 信頼性データの収集方式としては、材料・プロセス・試験評価の各段階で、各担当 グループ が作業 チェック項目として合計 15 種の カードに仕分けし、別個に収集し、インプットする 方式を採用している。この方式の特長は、遅滞なく データインプットが可能な点にある。すなわち、それぞれのインプットデータ を収集した後に全インプットデータ を同時に(ンプットする方式に比べて、時間的に前後して得られる データをあわせる 必要がないために 実際的であり、各 グループ の自主的な データ 管理の スムーズ 化に役立っている。

登録された絶縁データの解析に際しては、各グループの立場からの

要因の追求や トータルシステム としての幅広い追求など,柔軟性に富んだ アプローチ が可能である。分類整理・作表などの基礎的な処理のほか,バラツキ 要因の推定,特性をきめている要因の主効果や交互作用効果,データの特性式の推定,多変量からなる原因・結果系の相関関係の推定などの問題も任意に解析することができる。

また、このほかに、絶縁組織の劣化・破壊現象を統計的に追求する手法として、故障物理を基礎とする Weibull 解析などの信頼性データ 解析手法を付加している。

統計解析 プログラムの実行については、後述するように、データファイル に登録した全サンプルデータの中から、任意の条件づけのもとに引き出し、統計解析 プログラムへの インプットデータ として変換して連結することにより、 異なる統計解析 プログラム を何ケース も連続して解析できる方法をとっている。

また、初期特性解析および耐用特性解析の場合の モデル 化や データ 構造解析については、各種確率分布の明確な シミュレーションデータ を実 測データに加えて駆使し、 半実験的予測手法により、 目的変数の振 舞いを追求して シミュレーション することも可能である。

3. データファイリング システム

3.1 システムの構成

開発した データファイリング システム は、データ 整理・記憶部、 統計解析 部および シミュレーション 部から構成されている。各部および各 サブプロ グラム の システムフローチャート を 図3. に示す。

データ整理・記憶部は、入力データ・データファイル プログラム・整理 データ 作表 ・ 統計解析のための データ 形式変換 プログラム などの各部から構成され、各実行 プログラム は、 下記のように独立の ジョブ として機能別に分離されている。

- (1) 登録・保管 (YOKYU=1)
- (2) 修正・削除 (YOKYU=2)
- (3) リストアップ (YOKYU=3)
- (4) 作 表 (YOKYU=4, 5, 6, ···)

統計解析部は、 \vec{r} -9 形式変換をへた \vec{r} -0 \vec{r} -9 入力・統計解析 プログラム・解析 \vec{r} -9 作表の各部分から構成される。

統計解析 プログラム は、分散分析・回帰分析などの基本的処理に加えて、因子分析・判別関数・正準相関分析などの多変量解析手法を導入し、さらに、絶縁データ特有の解析手法として、有意差検定・Weibull 解析などによる信頼性解析プログラムを使用している。これらの各統計プログラム は、下記のような 1 枚の BUNSEKI=No. のコマンドカードでセットすることができる。

- (1) 分散分析 (BUNSEKI=1)
- (2) 重回帰分析 (BUNSEKI=2)

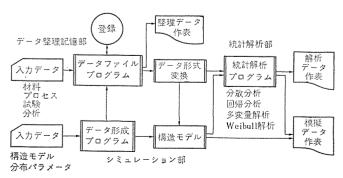


図 3. プログラムシステム ブロックダイヤグラム Program system block diagram.

- (3) 因子分析 (BUNSEKI=3)
- (4) 有意差検定 (BUNSEKI=4)
- (5) 多項回帰分析 (BUNSEKI=5)
- (6) 判別関数 (BUNSEKI=6)
- (7) 正準相関分析 (BUNSEKI=7)
- (8) Weibull 解析 (BUNSEKI=8)

また、シミュレーション 部は、入力データ・データ形成・構造 モデル・模 擬データ作表などの各部分から構成され、入力データ・データ形成の段 階で、任意の各種乱数の発生を行なっている。

3.2 実行プログラム

各実行 プログラム の関連図を図 4. に示す。データ 整理・記憶部における入力 データは、前述したように、製作・評価工程上の サンプルデータ について、 材料・試作・ 試験各 グループの担当者が分担している 15 種の入力 カードの インプット フォーマット に合せて入力されるが、 これらは プログラム YOKYU=1を用いて登録保管され、ディスク の指定箇所に逐次記憶される。 この記憶と同時に、記憶内容を打出し、記憶の正誤の チェックを行なう。 この段階で誤りが認められた場合は、誤りの部分のみについて プログラム YOKYU=2を用いて修正し、 旧ファイル にかえて新ファイルを作成する。登録・打出し・修正・打出しの サイクル は、正確な データ 登録を終了するまでくり返し行なわれる。プログラム YOKYU=2を用いる入力データ修正の自由度は大きく、再測定 データ や加工 データ の追加あるいは記憶 データ の個別的・系統的な修正が容易である。

プログラム YOKYU=3 は リストアップ を目的とした プログラムで, 指定した サップル についての記憶内容を打出するのであるが, 実行に際しては, あらかじめ プリットアウト および テープアウト の要否を指定するこ

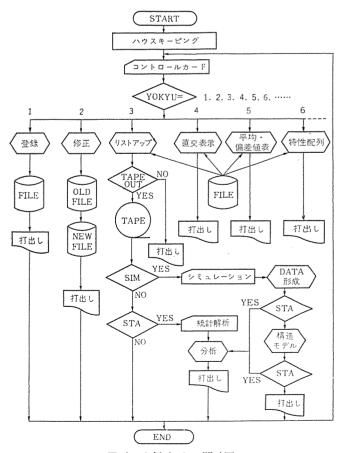


図 4. 実行 プログラム 関連図 Relation among executing programs.

とにより、打出しを必要最小限にとどめている。すなわち、YO-KYU=3の後にYOKYU=5を直結して、YOKYU=5による作表を実行する場合は、YOKYU=3によるブリントアウトもデーブアウトも不必要であり、また、統計解析プログラム および シミュレーションプログラムへの 連結のためには、後述するようにデーブアウトの指定が必要である。また、YOKYU=3は、重要な機能として、各種制限条件の多重付加が可能であり、200 個までの制限条件を組合せて使用できるため、必要な条件に該当するデータのみを抽出できる。

YOKYU=4, 5, 6 …… などの作表 プログラムとしては、着目するデータの特性に応じて、多くの様式の比較配列が可能な方式とし、いずれも YOKYU=3 による リストアップ の制限条件が設定できるので、比較したい サンブルの比較したい要因について簡単に調査することができる。たとえば、YOKYU=4 (直交表示)は、1 個の要因あるいは データ に限定して多数の テストサンブル をとりだし、試行番号を縦軸に サンブル 番号を横軸にとって、縦横に データ・平均値・標準偏差を打ち出させる ブログラム である。この作表様式は、1 個の要因・特性・情報などに着目した工程変動調査に適しているといえる。また、YOKYU=5 (平均・偏差値表)は、多くの制約条件のもとに抽出した テストサンブル について、キー番号・テストサンブル 番号を縦軸に目的とする要因・データなどを横軸にとって作表し、その平均値・標準偏差値を求める プログラムである。したがって、YOKYU=5 は、特異な値を示すデータに関連する要因追求に適している。

YOKYU=6 (特性配列) は、任意のデータを指定して、含浸し ジン・マイカテーブ 構成別にデータを整理・配列し、その平均値・標準偏差値でその特性差異を比較検討する作表 プログラム である。すなわち、 YOKYU=6 は、主に材料分類による特性データの比較調査に適している。

統計解析部での統計解析プログラム については、BUNSEKI=4、8を除いて、BMD 統計ライブラリー⁽³⁾中のはん用プログラムを応用し、データ解析システムとしての簡略化をはかった。これらの BUNSEKIプログラムでは、後述するように、登録・保管されている全サンブルデータの中から YOKYU=3を用いて解析データを抽出し、データ変換方式をへたデータをインブッドデータとして、それぞれの処理方式による統計処理を実行して解析データを作成する。

シミュレーション 部での実行 プログラムでは、インブットデータカードで構造モデル および分布 パラメータ を指定して データ 形成を行ない、 実測 データ とあわせて乱数による発生 データを用いて、構造モデルを装礎としてパラメトリック に要因を変化させることにより特性値の振舞いの模擬 データを得る。

3.3 データ変換方式

データファイル に記憶・保管された全データの中から、任意の統計処理 プログラム を適用して、統計処理結果を得る方式としては、各統計プログラムの JCL カードイメージをカタログ処理し、オーバレイ構造を用いている。 統計処理プログラムへのデータ変換連結方式のフローチャートを図 5. に示す。

データの変換連結は、次の2つのステップで実行される。

(1) ステップ1

データファイル(ディスク)の登録 データ に YOKYU=3 (リストアップ)の制限条件を適用し、解析目的に適合する サンブル を決定して、選択された サンブルデータ の テープデータ を作成する。

(2) ステップ2

前ステップで作成されたテープの中から、カードインブットにより、統計

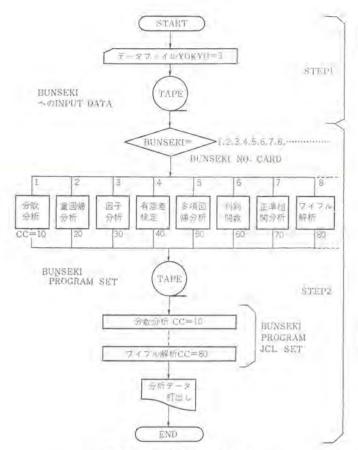


図 5. データ変換方式 フローチャート Flowchart of data conversion program.

プログラム 実行のための要因分けした データリスト を作成し、統計プログラム の インプットデータ として、テープ に一時 ストア する。統計 プログラム の JCL カードイメージ は、あらか じめ カタログ 処理されており、BUNSEKI = No.カード により 統計 プログラムの JCL を セット し、テープ に一時 ストア されている データ を インブットデータ として、統計解析を実行する。

3.4 絶縁データの統計解析

統計解析プログラムの一覧表を表 2. に示す。

統計解析 ブログラム の実行、ブログラム の打出す情報および応用した解析例については、図 5. および表 2. に示すように、単一な目的の統計処理だけでなく、BUNSEKI=1~8を連続的に使用することにより、多目的の統計解析を簡単なインプット命令で操作することができる。たとえば、重回帰分析に導入した要因間で、目的変数に対する説明変数の寄与率をあらかじめ近似的に推定している場合には、詳細な重回帰分析とあわせて、2変数に限定した多項回帰分析を連続して実行し、2変数の従属関係の構造まで論じることができる。また、単純にはその原因・結果を判定できない材料要因・プロセス要因などの複数の要因組合せと測定データ間の関係を明らかにするために、重回帰分析の一般化としての正準相関分析を行ない、連続して要因を選択した重回帰分析を行なえば、要因間の影響の度合いについての多くの情報を短時間で整理することができる。

このような統計解析プログラムを用いて、 絶縁データの解析を進めているが、 絶縁組織のもつ総合的な絶縁性能は単一の特性値では表わせず、 たとえば初期特性(電気特性)については、 絶縁破壊電圧 (BDV)・tan 8・コロナなど 複数の 特性値をあわせて評価しなければならない。 すなわち、データ解析の基本的方針としては、一次スクリーニッグ 段階での初期特性の解析、 機械的・熱的・電気的 ストレス 加速試験による二次 スクリーニッグ 段階 での 耐用特性の解析、総合機能試

表 2. 統計解析プログラム Statistical and reliability analyses programs.

No.	プログラム名	処 理 内 容
1	分散分析	分限分析表, 交互作用表, 製因改交和分解表などを得る. たとえば, テーブ種類, テーブ構成, 含浸条件, プレス乗合条件などの制限条件に適合するサンブルの tanô・BDV などについて分析する.
2	重回帰分析	重相関係数,回帰係数,寄与率, F 値などを得る。たとえば, 制限条件に適合するサンプルの $ an\delta$ ・ BDV などを従属変数 とし,テープ構成・テーピング条件・含浸条件・プレス重合条 件などの効果の度合いを分析する。
3	因子分析	相関行列, 異独寄与率, 固有ベクトル, 因子行列, 因子分散などを得る. 材料要因, ブロセス要因など多くの要因をもつデータ集団について, 外的基準なしに構成集団の要因間の共通な性質を見出す.
4	有意義検定	共通する要因を持つベアーサンブルをランダムに作成して特性 値比較妻を作成し、ア 検定により平均値間の有意差を検定する. たとえば、多数のサンブルについて、重要な要因を指定し、ベ アーサンブル間の二次的要因を除去した測定データについて比 較する.
5	多項回帰分析	相関係数,回帰係数,標準偏差値,分散分析表などを得る。多数のサンプルをグループ分けし,二次的要因を十分に制限した 従属変数と独立変数について,たとえば,BDV と絶縁厚さな どについての多項回帰式を得る.
6	判別関数	分散行列, 共分散行列, 逆行列, 校定行列, マハラノビス D ² 判別関数係数と定数, 分類評価ひん(類)度表などを得る. 注目 する測定データに関する良品と不良品について, 材料関因, プ ロセス要因, 測定データなどのうちどの要因が原因となってい るかを追求する.
7	正準相関分析	相関行列, 正準相関係数などを得る.多くの要因をもつサンプ ルデータを,原因系列と結果系列に分け,系列間の多変量関連 性を追求する.たとえば,単純には判定できない材料要因・プ ロセス要因と測定データ間の相関性を判定する.
8	Weibull 解析	形状・尺度・位置パラメータ・特性寿命・信頼限界寿命・瞬間 故障率などを得る。たとえば、材料・プロセス条件を固定し、 初期特性によるスクリーニング後の鼓選サンプルについて課電 劣化特性を解析する。

験段階などの各段階でそれぞれ評価項目を設定している。一例として初期特性の解析では、 主に BDV および tan δ を目的変数とし、BDV については 材料構成関係の 諸要因を中心とした データ 構造を 基礎とし、tan δ については処理 プロセス関係の 諸要因を 中心とした データ 構造を基礎として、諸要因が目的変数の平均値・分散などにおよぼす影響の度合いを検討した。その結果、

- (1) BDV と マイカテープ 構成要因との定量的関係式
- (2) tan ð に影響の大きい含浸レジン粘度・重合温度など含浸・重合 プロセス 関係要因の分析とその最適条件
- (3) BDV および tan 8 に およぼす 材料要因と プロセス 要因の交 互作用効果
- (4) 初期 $\tan \delta$ で得られる分散値についての要因間の相関関係などについての解析結果が得られ、材料および プ $\cot \lambda$ 段階への情報の $\arctan \delta$ 下がっかでなわれた。図 6. に、 Δ $\cot \delta$ と含浸 $\cot \delta$ と含浸 $\cot \delta$ を以びる 相関との関係について得られた結果を示す。打出しの制限条件に合致する $\cot \delta$ が変化している様子が明らかである。 すなわち、 $\cot \delta$ が変化している様子が明らかである。 すなわち、 $\cot \delta$ が変化している様子が明らかである。 すなわち、 $\cot \delta$ を不安定なものであることがわかる。

耐用特性の解析については、その一例として、 故障物理 モデル (4) を 基礎とした課電劣化寿命の予測をすすめ、

- (1) 電界と温度の複合 ストレス の場合の課電劣化寿命
- (2) 初期特性での バラッキ がおよぼす耐用特性の バラッキ などについて解析を行ない、従来の耐用特性推定上の不確定要素の

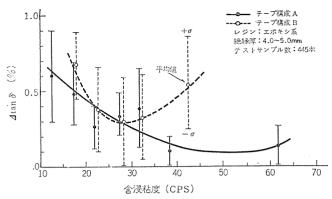
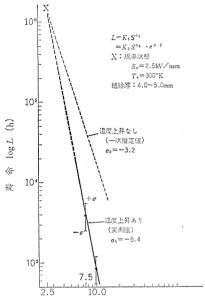



図 6. 含浸粘度と Δ tan δ の関係 Relation between Δ tan δ of test sample and viscosity of impregnating varnish.

電界強度 log S(kV/mm)

図 7. 故障物理 モデル による寿命予測 Failure physics model in life prediction.

明確化や特性値の補正方式などを得ることができた。

図 7. に、故障物理 モデル による寿命予測の一例を示す。この実測値は、加速が成り立つと仮定して、電界(電圧)を定常状態の $3\sim4$ 倍に加速して連続印加した モデル実験で得た値である。図 7. 中の実線は、縦軸を実測で得られた寿命 L、横軸を印加した電界 S とし、両対数表示を用いて、直線と仮定して外そうしたものである。すなわち、電界 Z トレス による α 乗則 Z の関係は、Z の関係は、Z を 乗則の場合の Z の Z を Z

$$L=K_1S^{\alpha_1}$$

という形になっている。

しかし、実際には、加速電界の印加は温度上昇をともなうため、 実測値は、電界と温度の複合 $2 \text{ Lu} \lambda$ が同時に印加された場合の加速 試験 \vec{y} -9 と考えられる。

この実測値を,温度による加速も成り立つと仮定し,故障物理 モデル による複合 ストレス の場合 $^{(4)}$ として表わすと, B を活性化 エネルギ $^{-}$ 項 $^{(4)}$ とし, T を絶対温度として,

$L = K_2 S^{\alpha_2} \cdot e^{B/T}$

という形で与えられる。

この複合 $\xi \in \mathbb{R}$ を用いて、温度上昇の実測値から B項および α を

推定し、基準温度(Tr)に規準化した場合の一次的な補正データを図7.中に点線で示している。この結果、電界を4倍に加速した場合には、温度上昇による寿命短縮は1けた程度であることが近似的に推定できる。このような故障物理による手法を用いることにより、テープ構成・レジン種類などによって異なる電界加速寿命の推定曲線上の相違点を比較し、絶縁組織の耐用特性評価のための情報が得られている。

3.5 絶縁データのシミュレーション

信頼性解析 システム における シミュレーション 手法の導入は,

- (1) 現実には製作不可能なサンブルサイズのデータ発生
- (2) 時間的に実現困難な現象を モデル 化し模擬する
- (3) 条件変更の自由を仮想実験

など、実測データでの処理限界をこえた処理方法の適用を可能とし、 実測データの信頼限界の推定などに有用である。応用例として、

- (1) 初期特性における tan 8 値の振舞い
- (2) 複合モデルによる寿命予測

などについて、推定方式を導出している。すなわち、tanδ値の振舞いとは、材料・プロセス・試験評価などの絶縁データを数学 モデル化して導いたデータ構造式の中の真空処理・含浸レジン粘度などの重要な要因の条件を変化させて得られる tanδ値の変化の様子をいい、漸次精度をあげていけば最適条件の 仕握が容易となる。

また、複合モデルたついては、前述したように、電界・温度・振動など多くのストレスがかなりの加速率で重畳している場合の寿命予測モデルの解析である。この場合は、加速率の大あるいは小のときの劣化破壊への現象の進行の相違を反応速度に変換して推定し、マトリックス実験(4)によるチェックデータとあわせて、基準状態での耐用寿命を予測する手法を適用している。

寿命予測値でのパラッキについては、初期特性の分布にしたがって 複雑なものとなるが、実測値とあわせた シミュレーションモデル の解析を 進めることにより、実測値の解析だけでは不可能な精度での信頼限 界の推定値を導くことができる。

また、現実の問題として、限られた開発コスト・開発約期・パイロットプラントの容量を考慮すると、半実験的にプロセス条件を打診したり、数十年にわたる耐用特性を評価したりする場合への シミュレーション 手法の適用は、実現不可能な条件の模擬による推測として、重要な意

味をもっている。

4. むすび

高圧回転機絶線開発における絶縁データの信頼性解析 システム の構成・機能・解析例などの概略を簡単に述べた。

新絶縁組織の開発に際しては、材料単体での性能にもまして、材料間の協調性や製作時の作業性など重要な検討項目が多く、計画・ 実験・評価などの多段階にわたりデータの整理や解析が行なわれなければならない。

このような開発にデータファイリング システム を適用し、 莫大な 量の データ を電算機処理することにより、

- (1) データ 集積の総合化
- (2) 整理・解析の迅速化
- (3) 高信頼度化

などのメリットが大きく。開発工程の短縮、開発効率の向上が促進されている。

しかし、データ処理方式としては、実用的には統計処理が主体となっているため、絶縁破壊現象を確率現象として取扱うこと自体による問題点が残っている。すなわち、さらに高信頼性を得るためには、固体複合絶縁組織特有の劣化過程や破壊機構を物理的側面から追求し、その結果を故障物理モデルに導入しなければならない。

今後は、絶縁データの収集、入力の自動化をはかり、総合機能試験データや各種加速試験データなどによる動作寿命予測プログラムを含めて、絶縁劣化破壊現象の物理的理解および統計的説明を総合した高信頼性管理手法の確立化を進めていく予定である。

(昭和49-1-21受付)

参考文献

- (1) 下地, 平林低か: 絶縁 データのデータファイリング システム, 第3回 信頼性 シンポジウム 発表報文集, 521 (昭 48-4-23)
- (2) 下地、平林低か: 絶縁 データの データファイリング システム、 品質管理、 24, No. 9, 72 (昭 48)
- (3) MRI: Biomedical 統計 ライブラリー
- (4) 塩見:故障物理入門,日科技連,(昭45)

低圧誘導電動機のF種絶縁

脇坂信隆*·堀内勝彦*・柴田美夫* 坂田桂三***・玉越泰彦**

Class F Insulation for Low Voltage Induction Motors

Nagoya Works Nobutaka Wakizaka • Katsuhiko Horiuchi • Yoshio Shibata Manufacturing Development Laboratory Keizô Sakata • Yasuhiko Tamakoshi

The history of induction motors is closely related to the procedure of changing them to smaller sizes and lighter weight. This change not only owes a great deal to the advance of design and manufacturing technique such as the improvement of cooling them by ventilation, but also owes the progress of insulating materials. Of them, the new insulation is made available by the development of high molecular chemistry. In the classification of insulation with induction motors, advance has made from class A to class E. Now change from class E to class F is being studied.

In this article is made brief description on the circumstances standing in the back of the employment of class F insulation and on its merits. Next introduction is made on the concrete details of its structure and the evaluation tests of various functions as a central topic so as to serve as reference to those interested in the matter.

1. まえがき

最近の回転機は小形軽量化、大容量化の傾向が著しく、特に誘導電動機においては耐熱絶縁種別の採用の傾向が顕著である。すなわち低圧電動機ではE種からF種へ、高圧電動機ではB種からF種への耐熱性向上の方向である。これらは回転機の設計および製造技術の進歩にもよるが、高分子材料を中心とした耐熱材料の開発や、絶縁処理技術の開発に負うところが大きい。

低圧誘導電動機の小形軽量化,大容量化の傾向は規格の変遷からも明らかである。わが国では1956年に米国のNEMA規格を参考としたJEM-1110 (A種電動機寸法規格)が制定されホルマール系絶縁材料に代表されるA種電動機の改良がなされた。その後1960年ドイツにおいてE種絶縁を採用したDIN規格が発表されたのを契機として、国内でも1964年にIEC規格に準拠したJEM-1180 (E種電動機寸法規格)が制定され、現在に至っている。またこのとき絶縁材料はポリエステル系絶縁材料に切換えられた。

最近では欧州各国において、E種電動機に代る新しい電動機系列が検討されている。 また 米国においては 1964年 A 種系列から新しいB 種系列の NEMA が制定され現在に至っているが、さらに現行系列より小形軽量化を計る検討がなされており、電動機の小形化は国際的なすう勢である。

小形化の例として、電動機の容積を同一とした場合の最大出力を開放形 250 フレーム、4 極の電動機について比較すると、A種では 45 kW、E種では 75 kW であり、今回ここで述べる ポリエステルアミドイミド 系絶縁材料に代表されるF種絶縁を採用すると、実に 110 kW あるいはそれ以上の出力を出すことができるようになる。

F種化すると小形軽量化が可能となるとともに、据付面積の減少、 運搬費の節減、加速性の改良、低騒音化等の利点があり、さらにF 種絶縁材料は機械的強度、耐圧、耐環境性等にもすぐれた特性を有 しているので、電動機の信頼性の向上にも寄与している。これらの F種絶縁組織を 決定するためには 新しい材料や 絶縁 システム を合理 的に、短期間にかつ精度の高い評価を行う必要がある。 ことでは、新しい低圧F種絶縁組織に対する基本的な考え方と, その検討手順、各種機能評価試験、およびその結果などについて述 べる。

2. 絶縁組織の検討手順

絶縁組織を決定する過程は, 大別すると,

- (1) マグネットワイヤ, ワニス および薄葉材料等の材料単体試験と, これらを組み合せて行う適合性試験を含めた スクリーニング 試験
- (2) スクリーニッグされた材料を一つの絶縁組織として組み立て, 電動機絶縁としての機能を満足するか否かを検討するための機能評 価試験

3. 各種絶縁材料のスクリーニング試験

3.1 マグネットワイヤ

ばら巻電動機の絶縁組織を構成する絶縁材料のうち最も重視しなければならないのは、マグネットワイヤである。マグネットワイヤに要求される特性としては種々あるが、まずあげられることは、耐熱寿命がF種を満足し、巻線、コイル入れ時に十分な機械的強度を保有することである。

当社が採用したF種マグネットワイヤの耐熱寿命を図 2,図 3.に示す。 試験は IEEE No. 57 法(1)に従って行なった。 この試験は、ワニスとの適合性をみるために 欠くことのできない 有効な スクリーニッグ 試験である。 その手順は、まず図 2.に示すように各温度での寿命を ワイブル 確率紙に プロット し、平均寿命 μ と 95 %信頼限界 βρς を求め、これをもとに、図 3.に示すようにして、 F種での寿命を推定する。ワイブル 確率紙より各温度での形状 パラメータ m を求めてみると、各温度とも m>1 で、摩耗破壊であり、その値もほぼ等しい。 さらに、マグネットワイヤを スクリーニッグ するためには、ワニス 処理の作業性を考慮しなければならない。つまり マグネットワイヤ が、巻線、コイル 入れおよ

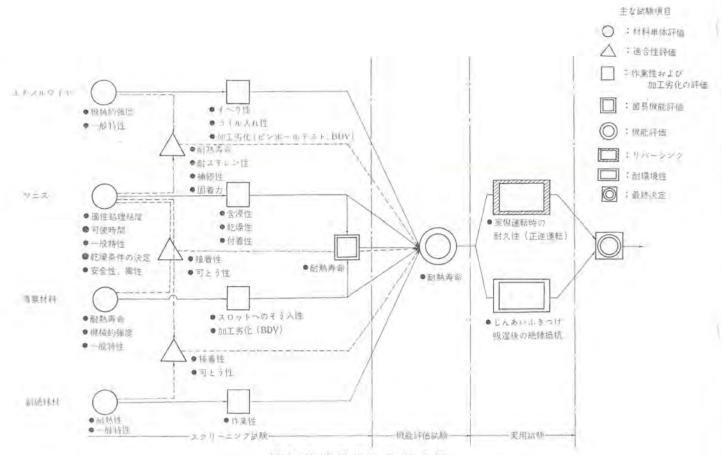


図 1. 絶縁 組織の検討手順 Flow chart of evaluation procedure for insulation systems.

び コイルエンド 成型時にひずみを受けたまま ワニス 処理された場合には、ソルベントショック により エナメル に き裂、膨潤を生ずるととがあるので注意する必要がある。通常とれらは、アニーリングすることにより解消されるが、マグネットワイヤ 皮膜の材質によっては解消できないものもある。このため、表 1. に示すような試験を行い、耐 ソルベントショック性を判定した。 試験結果によれば当社の F種 ワイヤ は優れた特性を有していることがわかる。

このほかマグネットワイヤに要求される特性で重要視しなければならないのは、皮膜の機械的強度である。これは巻線時やコイル入れ時に傷のつきにくいことが、要求されるためである。JIS 往復摩耗、NEMA 一方向式磨耗は、摩耗回数や荷重などの物理的な評価でし

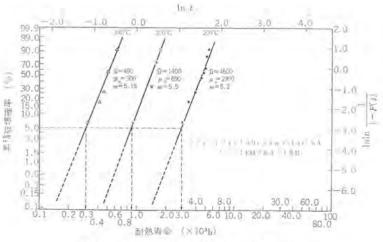


図 2. マグネットワイヤ の耐熱寿命の ワイブルブロット Weibull plots for thermal life of magnet wire.

かないので、当社においては絶縁破壊電圧の強さで評価することを 試みている。つまり、図 4. に示すように、ピアノ線の上にこれと直 交させて、マグネットワイヤを置き荷重を任意に変えて矢印の方向に引 き、この引かき部分の絶縁破壊電圧を液体電極中で測定する。この 結果を、図 5. に示すように正規確率紙にプロット し、平均値と絶縁

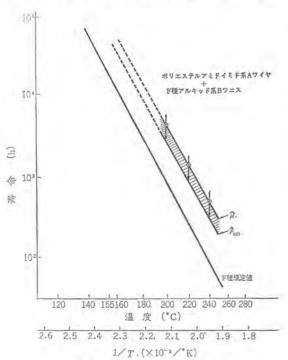


図 3. マグネットワイヤ の耐熱寿命 Thermal life curves of magnet wire.

表 1. マグネットワイヤ の耐溶剤性 Solvent resistance of magnet wire.

ワニス 試験法	1. 5 10 2. 1: 3. 66	/イヤを 10 タ・ 30°C 1 /する 0 ¢ の シ	· 1 d () - ンず * 0~15 * シャーレ 注入す	キ : 自己登付け 分アニー へ 一内に る 硬化させ	~5d tる -リン おき	2. 同 左 3. 同 左				
ワー住		ル表面	, -		· · · · ·			西を観		72
1 7	1 <i>d</i>	2 <i>d</i>	3 <i>d</i>	4 d	5 d	1 d	2 <i>d</i>	3 <i>d</i>	4 d	5 d
耐然ポリエステル	×	Δ	0	0	0	0	0	0	0	0
ポリエステル アミドイミド系 A	0	0	0	0	0	0	0	0	0	0
ポ リエステル アミドイミド系 B	0	0	0	0	0	0	0	0	0	0

判定 (×はく(剝)離. △膨潤, ○異常なし)

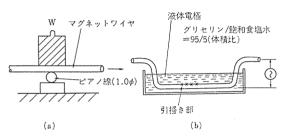


図 4. マグネットワイヤ の引かき試験法 Test method of scrape abrasion for magnet wire

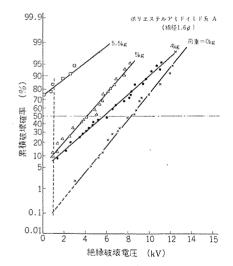


図 5. マグネットワイヤ の絶縁破壊電圧の分布 Distribution of breakdown voltage of magnet wire.

破壊電圧が1kV以下である破壊確率を求め、これらの荷重依存性を図 6. により判定する。この方法は、手作業によるコイル入れ、および自動巻線機の加工劣化を受ける状態と近似しており、スクリーニング試験として有効な手法である。この試験結果からも当社の採用したF種マグネットワイヤ(ポリエステルアミド 系A)は十分な機械的強度を有していることがわかる。

3.2 薄葉材料

スロットセルやウェッジ等の薄葉材料については、マグネットワイヤのように、耐久性は握のための試験法が確立されていず、一般的には電気的諸特性の確認を行い、次に熱劣化による絶縁破壊電圧、引張強さ等の変化から、その特性をは握することが試みられている。

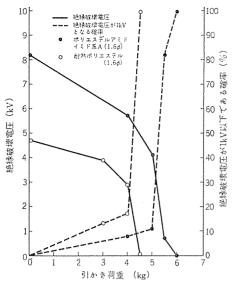


図 6. 引かき荷重と絶縁破壊電圧および1kV 以下である 確率との関係

Breakdown voltage and failure rate at under 1 kV as a function of scrape abrasion_weight.

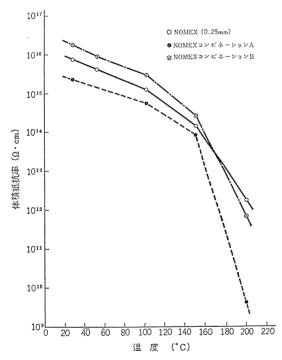


図 7. 体積抵抗率-温度特性 Volume resistivity vs. temperature.

電気特性としては、図7. に体積抵抗率と温度の関係、図8. に誘電正接と温度の関係を示す。体積抵抗率については NOMEX と NOMEX コンピネーション Bとの低下傾向は似かよっているが、NOMEX コンピネーション Aのように NOMEX とはり合わされる フィルムの材質によっては 160°C 以上での低下度合が大きくなる。また、誘電正接の温度依存性については、NOMEX と NOMEX コンピネーションの急上昇温度が大幅に異なる。これははり合わされたフィルムのガラス 転移点 Tg がこの付近に存在しているためと考えられる。

熱劣化による引張強さ、絶縁破壊電圧の変化を図 9、図 10. に示す。NOMEX コンピネーションは、熱劣化初期において低下が見られ、その後は安定した特性を維持している。当社においては、このような従来の方法で諸特性を確認すると同時に、必要に応じて、図 11.

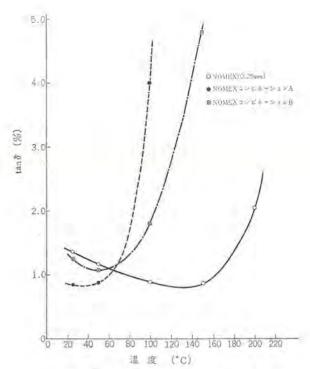


図 8. 誘電正接-温度特性 Dissipation factor vs. temperature.

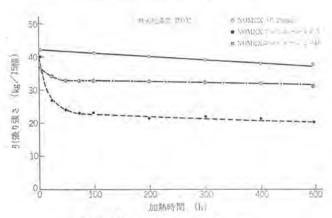


図 9. 熱劣化による引張強さの変化 Change in tensile strength after thermal aging.

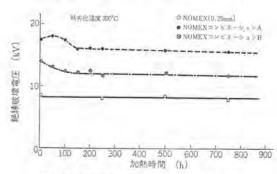


図 10. 熱劣化による絶縁破壊電圧の変化 Change in breakdown voltage after thermal aging.

に示すような簡易 モートレット 法を,採用している。 試験の条件は, すべて IEEE No. 117⁽²⁾ 法に準拠しての試験で良好と判断されたも のについてのみ機能評価試験を実施する。

図 12. には、この試験で得られた結果の代表例を示す。寿命の終点は、各 サイフル の終りに チェック 電圧 660 V 10 分間を加えては握している。 NOMEX はもちろんのこと、 NOMEX コッピネーション も F

図 11. 簡易 モートレット Simplified motorette.

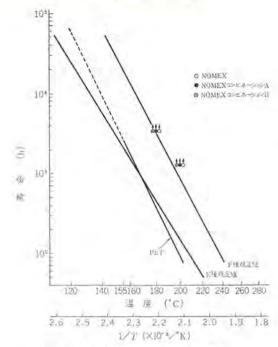


図 12. 簡易 モートレット の耐熱寿命 Thermal life curves of simplified motorettes.

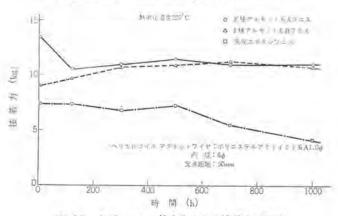


図 13. 各種 ワニス の熱劣化による接着力の変化 Change in bond strength of various varnishes after thermal aging.

種を十分満足していることがわかる。

3.3 ワニス

ワニスのスクリーニングで注意を要する点は、前述したとおりマグネットワイヤとの適合性の良いこと、および熱劣化に対して接着力が安定していることなどである。図13.には、220°Cで熱劣化させた場合のヘリカルコイル接着力の変化を示す。いずれのワニスも、長時間、安定した接着力を維持している。この他の特性面では、巻線、コイル入れ中のマグネットワイヤに、不慮の傷がつけられた場合、この部分を補修するため、浸透性が良く、適当な付着厚を得ることができるものが必要とされる。この確認は、故意に傷つけたモデルコイルのワニス処理

前後の ピンホール 数の比較,および後述する耐環境性試験によって行なっている。また,公害,作業上の安全衛生面からも十分な検討を 行なっている。

4. 絶緣機能評価試験

4.1 試験方法および試験装置

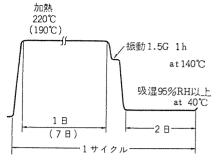
低圧ばら巻電動機絶縁の機能評価試験法としては、IEEE No. 117 法があり、モートレット試験としてよく知られている。この方法では、電動機が受ける主な劣化要因の熱・振動・吸湿を個々別々にあたえているが、実際の電動機では、これらの劣化要因が並行して加わり、その相乗作用によって寿命が左右される。そこで当社は、実機固定子を用い、加熱、振動、電圧の劣化因子を同時に加えられ、その後で吸湿試験を行うことのできる低圧ばら巻電動機絶縁機能評価試験装置を開発し、F種絶縁の評価に適用した。

試験条件および装置の ブロック 図を, 図14, 図15. に示す。試料は, 製造時の加工劣化を考慮し、440 V級、750 W三相誘導電動機の実 機固定子を用いた。加熱は、恒温炉により行ない、1サイクルの加熱 温度と時間の関係は、220℃-1日、190℃-7日間である。 加熱 サイ クル終了後, 温度を 140°C に下げ図 16. のような マグネット を利用し た振動装置により、重力加速度 1.5 G の振動を 1 時間加える。振動 試験終了後,温度を40°Cにまで下げ,相対湿度95%以上の高湿状 態とし、2日間放置する。この間、高温、振動および吸湿のすべて の期間にわたり、定格電圧を印加する。ここでは、相間および対地 間に 440 V を印加した。また、チェック電圧として吸湿試験終了直前 に,線間に 150 V,相間および対地間に 660 V(定格電圧の 1.5 倍) を10分間印加した。絶縁破壊は過電流継電器を動作させて検出し、 積算時間計により試料が破壊するまでの時間をもとめた。この試験 装置では、 これらすべての試験を 最初に試料を セット したままの状 態で行うことができ、振動あるいは吸湿試験のたびごとに試料を取 り出す必要がない。試験状況を図 17. に示す。

4.2 試 料

供試試料の絶縁構成を表 2. に示す。これは、 絶縁材料単体でのスクリーニング 試験で選ばれた電線 3 種類、スロットセル 2 種類、ワニス 3 種類を組合せたもので、電線およびワニスの比較と電線とワニスの適合性、スロットセルの比較評価ができる。また、試料は前述のように 440 V、750 W 三相誘導電動機の実機固定子を用い、中性点は開放して絶縁をほどこしている。

4.3 試験結果


このような寿命試験結果は一般にワイブル分布となることが予測されるので、ここでもワイブル分布による解析を行なった。

各絶縁組織でとの線間および相間について ワイブル 確率紙上に プ

表 2. 絶 緣 構 成 Insulation systems of test samples.

記号	マグネットワイヤ	ウエッジ	スロットセル	相問絶縁	ワニス
A	ポリエステル アミドイミド系A	NOMEX	NOMEX	NOMEX	ワニスY
В	ポ リ エステル アミドイミド系A	NOMEX	NOMEX	NOMEX	ワニス2
С	耐熱ポリエステル	NOMEX	NOMEX	NOMEX	7 = 2 X
D	ポ リ エステル アミドイミド系B	NOMEX	NOMEX コンビネーションA	NOMEX	ワニス2

ワニスX: F種アルキッド系A ワニスY: 変成エポキシ ワニスZ: F種アルキッド系B

印加電圧:(相間,対地間) 定格電圧 常時印加 チェック電圧:(相間,対地間)1.5×定格電圧 } 10分間 (線間)

図 14. 試 験 条 件 Test condition of thermal cycling.

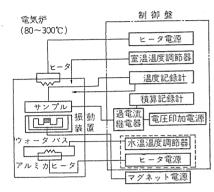


図 15. はん用電動機 絶縁機能試験装置 プック図 Block diagram of functional evaluation test equipment for random wound motor insulation.

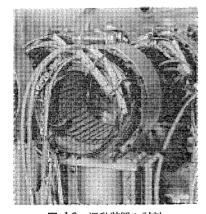


図 16. 振動装置と試料 Test sample mounted on vibrator.

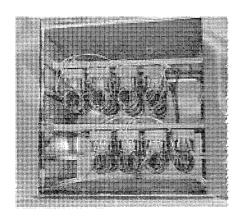
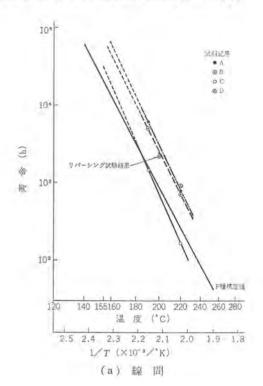



図 17. 試験装置内部状況 Interior view of test equipment.

ロット し、形状 パラメータ m、平均寿命 $\hat{\mu}$ 、95% 信頼限界 $\hat{\rho}_{05}$ の値を求めた。各試験温度での平均寿命を求め、線間および相間絶縁の温度-寿命特性を示したのが図 18. (a), (b)である。

これらの結果をまとめると、次のようになる。

- (2) いずれの絶縁組織の線間および相間とも平均寿命は 10 サイ かい以上であり、すべてF種以上の耐熱性を有している。

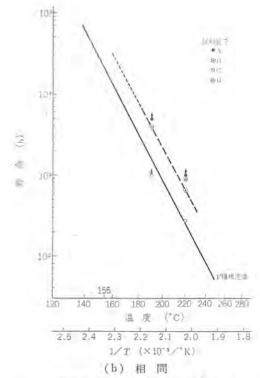


図 18. F種絶縁組織の耐熱寿命 Thermal life curves of class F insulation systems.

(3) 対地絶縁は試験温度220℃,190℃で20サイクルに至るまで 破壊したものがなく、すぐれた寿命特性を示し、F種以上の耐熱性 を有している。

以上,各種絶縁組織ごとの線間,相間および対地絶縁の評価を行なうことができると同時に,これらを一つの絶縁組織とした場合の評価も可能な試験方法である。これらの結果からF種を十分保証できる絶縁組織(ポリエステルアミドイミド 系Aワイヤ+F種 アルキッド 系Bワニス)を選出し,最終的な確認として次項に述べる実用評価を行うこととした。

5. 実用性試験

5.1 耐環境性試験

開放形 モートルの場合,使用される環境下に存在するじんあいが,ファンによって吸込まれ絶縁組織のうち特に コイルエンドに付着することは必至である。当社では,全国二十数個所においてモートル設置個所のじんあいを収集,分析して,標準的な人口じんあい(NaCl+MgCl₂+CaSo₄+木粉+トノ粉 etc,比導電度 1.1×10^{-3} \odot · cm⁻¹)を作成した。これを吸湿させた ステータコイルに均一に付着させ,引き続き 40° C 95 ± 5 % RH の恒温恒湿そうにて吸湿し,相間,r-2 間に定格電圧を加えて放置する。その後,適当な時間を決めて吸湿状態の相間,r-2 間の絶縁抵抗を測定する。じんあいふきつけ後のコイルエンドの状態を図 19 に,試験結果を図 20 に示す。 当社の下種絶縁組織は,吸湿飽和後でも絶縁抵抗の低下は少なく,耐環境性にすぐれていることがわかる。

図 19. じんあい吹付後の ステータコイル Stator winding spraied with dust.

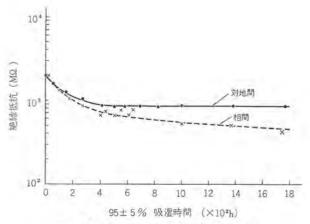


図 20. ステータコイル の吸湿絶縁抵抗特性 Change in insulation resistance of stator winding during humidity test.

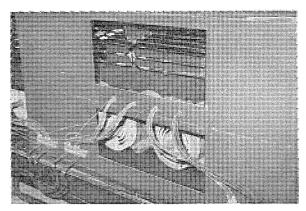


図 21. リバーシング 試験装置に設置された モートル Reversing test equipment for random wound motors.

5.2 リバーシング試験

6. む す び

以上,F種絶縁組織の開発にあたり,絶縁材料および組織の選定 手順とその結果について述べてきた。当社では,これらの結果をも とに次のようなF種低圧誘導電動機 絶縁組織を確立した。

- (1) 電線 ポリエステルアミドイミド 系
- (2) 薄葉材料 NOMEX コンビネーション
- (3) ワニス F種 アルキッド 系 ワニス

絶縁材料の開発は、今後とも活発に行なわれ、すぐれた絶縁材料が出現してくるものと予想される。これらを電動機絶縁に適用するためには、絶縁材料の評価を正確かつ短期間に実施するとともに製造上の問題、とくに巻線自動化、ワニス処理自動化についても考慮するなど、多方面からの検討が必要である。これに対処して、絶縁材料および絶縁組織の評価法および機能評価試験法について、さらに検討を進め、より経済的で信頼性の高い絶縁組織の開発に努力して行きたい。

参考文献

- (1) IEEE No. 57: Test Procedure for EVALUATION of the THERMAL STABILITY of the ENAMELED WIRE in AIR
- (2) IEEE No. 117: Test Procedure for EVALUATION of SYSTEMS of INSULATING MATERIALS for RANDOM -WOUND ELECTRIC MACHINERY

電動機絶縁の耐環境性評価

脇坂 信隆*·杉田 保彦*·坂田 桂三**

Evaluation of Motor Insulation for Various Environment

Nagoya Works Nobutaka Wakizaka • Yasuhiko Sugita Manufacturing Development Laboratory Keizô Sakata

In order to have a motor satisfy its function in severe environment, it must have insulation structure to withstand it well. This necessitates the evaluation of the endurance ability with coils or a motor gone through perfect insulation processing as well as of insulation materials to confirm the reliability.

In developing the insulation structure, Mitsubishi conducts evaluation tests under every anticipated condition and supplies motors of high reliability to the customers.

This article describes the evaluation of the endurance ability in reference to the insulation of motors of general purposes, machine tool use and corrosion-proof operating in the environment of high humidity, much salt and dust.

1. まえがき

産業の発展および拡大に伴い、電動機の需要はますます増加しているが、同時に電動機が使用される環境も多様化している。

電動機における絶縁性能は、機械の寿命を決定する重要な要素であり、電動機の設計製作にあたって、環境に応じた絶縁方式を選定し、その機能を十分発揮するととが必要である。

当社では、個々の絶縁材料ばかりでなく、絶縁処理を完了した電動機 コイル についても、 厳しい耐環境性評価を行なって、信頼性の高い絶縁組織を開発している。

ここでは、特殊環境の種類を挙げ、小・中容量低圧電動機の絶縁 を対象とした耐環境性評価の代表例について述べる。

2. 特殊環境の種類

特殊環境は、電動機絶縁に対してさまざまな影響を及ぼすが、これを分類すると次のごとくである。

- 2.1 絶縁抵抗を低下させるおそれのある場合
- (1) 85 % RH 以上の湿度が、長時間継続する多湿場所。
- (2) 船舶・臨海地帯など塩分の多い場所,または海水の飛まつをうける所。
 - (3) 水中, 海水中。
- (4) 工作機に使用する水溶性切削油剤の飛まつをうける所。成分によっては絶縁材料物性に影響を及ぼす場合もある。
- (5) 電解質, その他導電性物質などを含むじんあい(原埃)の多い場所。
 - 2.2 絶縁材料の物性変化により、絶縁性能を低下させるおそれ のある場合
 - (1) 周囲温度が -40℃ 以下の低温場所。
 - (2) F種, H種, C種などの耐熱絶縁を使用すべき高温場所。
- (3) 酸、アルカリ、その他腐食性物質などの蒸気が多い場所、 または飛まつをうける所。酸およびアルカリは、直接絶縁抵抗を低下させる場合も多い。
- (4) 絶縁油(鉱油, シリコシ油), 潤滑油(マシン油, タービン油)などの飛まつをうける所, またはこれらの油中。

- (5) フロン (R12, R22) などの冷媒中。
- (6) 放射線の存在する場所。
- 2.3 その他
- (1) 微生物の繁殖しやすい場所。
- (2) 振動の激しい場所。

現実には、これらの環境が複合する場合が多く、電動機絶縁に対 して幅広い普遍性が要求されている。

3. 耐環境性評価

3.1 はん用電動機

3.1.1 使用環境

特殊な環境・条件の下で使用されることが明らかな場合は、相当 する特殊絶縁処理の採用、あるいは外被形式の選択によって、耐環 境性を満足させることができる。しかし、はん用電動機の応用分野 は広いため、環境の種類も多く、しかも厳しいものになってきてい る。はん用電動機も、この点を考慮したうえで、信頼性の高い絶縁 組織を構成する必要がある。

われわれは、需要家の協力を得て、幅広い分野にわたって環境の 調査を行ない、電動機使用場所の湿度とコイルに付着しているじん あい成分とから、その実態を判断している。表 1. に水の比導電率 を、表 2. に採取したじんあい中の成分分析例を示しているが、じ んあい中には、NaCl, CaSO。 MgCl₂ などの電解質を含む場合が 多く、水に溶解して導電性を高めることがわかる。このような導電 性のじんあいが、コイルに付着し吸湿することにより、コイルの表面 絶縁抵抗が低下し、トラッキングを発生させ、絶縁破壊をひきおこす ことがある。

との傾向は、前述の導電性じんあいの付着および吸湿の程度によって左右されることはもちろんであるが、さらに、電動機の使用電圧および運転・停止などの使用状態によっても影響をうける。

表 1. 水の比導電率 Specific conductivity of water.

価	類	比專號率 (tj/em) at 25°C
粧	水	1.8×10-6
ifi	水	3.3×10-2

表 2. じんあい中の成分分析例 Results of chemical analysis of components in dust.

採取	温 水 可溶分		温水下	比導電率 ℧/cm (25°C, 1%				
場所	可格分 (Wt %)	Na+	Ca+2	Mg+2	CI-	SO ₄ -2	その他	水溶液)
A	70.2	18.8	1.6	1.7	33.6	7.4	7.1	1.2×10 ⁻²
В	36.2	0.6	4.5	0.4	2.0	9.4	19.3	2.6×10-3
С	10.1	1.3	0.9	0.2	5.6	0.7	1.4	2.1×10 ⁻³
D	9.7	0.4	1.4	0.2	0.9	3.2	3.6	9.2×10-4
Е	8.1		1.7	0.2	1.1	3.0	2.1	7.6×10-4
F	11.1		0.5	0.1	0.7	2.0	7.8	5.1×10-4

3.1.2 材料評価

耐環境性を考慮する場合, エナメル 線, 薄葉材料, 絶縁 ワニス などの コイル 構成材料にとって, 次の項目がきわめて重要である。

- (1) エナメル 線は被膜の機械的強度が高く、耐湿性が優れている こと。
 - (2) 薄葉材料は吸湿が少ないこと。
- (3) 絶縁 ワニス は浸透性および接着性に優れ、 エナメル 線の傷をよく補修すると同時に コイル を強く固着できること。

中容量はん用電動機を例にとり、代表的構成材料について具体的 に述べる。

ポリエステル線は、 E・B種電動機に広く使用されている エナメル線 であるが、エナメル被膜の機械的強度がやや低いうえ、分子鎖中のエステル結合のため、加水分解性をもっており、湿気を含む密閉環境では特性低下を起すことがある。各種 エナメル線を検討した結果、ポリエステル線を基本として、これに改良を加えた特殊ポリエステル線が、ポリエステル線単体の前記欠点を大幅に改良できることが明らかになった。

エナメル線の機械的強度の比較として、JIS には往復しゅう動式際 耗試験が、NEMA には一方向摩耗試験が規定されているが、当社 においては、巻線加工中の劣化をよく模擬し、損傷の難易を容易に 比較できる次の方法も用いている。

まず、一定径の ピアノ線を介して、エナメル線に荷重を加えておき、一定速度でエナメル線を引張る。これを液体電極に浸漬して絶縁破壊電圧を求める。図 1. に、この試験を行なった エナメル線の絶縁破壊電圧残存率を示すが、特殊ポリエステル線は、高荷重における絶縁破壊電圧残存率が高く、被膜の機械的強度が優れていることがわかる。

耐加水分解性については、 ガラス 管に エナメル 線の 2 個より 試料と水分とを封入し、一定温度で一定時間加熱した後絶縁抵抗測定を行なう。 表 3. に導体径 1.0 mm, 1 種 エナメル 線の耐加水分解性の 比較を示すが、特殊ポリエステル 線が同様に優れている。

薄葉材料および絶縁 ワニスも、適切な材料選択と絶縁処理とを行ない、信頼性の高い絶縁組織を構成している。絶縁処理に際し、吸湿じんあいから コイル 内部を保護するために、表面に厚い絶縁 ワニス層を形成する必要がある。 高粘度 ワニスを使用すれば、厚膜層は可能であるが、逆に、内部への浸透を阻害し、エナメル線の欠陥補修の不足を招くことがある。 当社では、これに対し絶縁 ワニス の温度効果を利用した特殊処理法、あるいはそれぞれの目的に適した複数 ワニスの併用などにより、効果をあげている。

3.1.3 絶縁組織評価

絶縁組織の耐環境性評価にあたって、当社では、じんあい付着試験とも呼ぶ次の方法を採用している。 すなわち コイル に人工じんあ

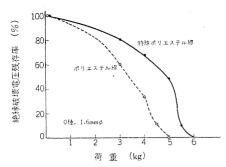


図 1. 荷重による エナメル 線の絶縁破壊電圧変化 Breakdown voltage of enameled wires as a function of load.

表 3. ェナメル線の耐加水分解性 Resistance against hydrolysis of enameled wires.

加熱条件	水 分	絶縁抵抗 (Mſ	2)/at DC 500 V
加热架件	(vol %)	ポリエステル線	特殊ポリエステル線
180°C/2 h	0.2	2.0×10 ⁸	4.0×10 ³
200°C/2 h	0.2	皮膜溶解	4.0×10°

表 4. 人 エ じ ん あ い 成 分 Components of artificial dust.

じんあい成分	NaCl	MgCl ₂	CaSO ₄	との粉	木 粉
組 成 (Wt%)	3	1	6	60	30
比 導 電 率 (U/cm) (25°C、1%水溶液)	-	· ,	1.1×10-3		·

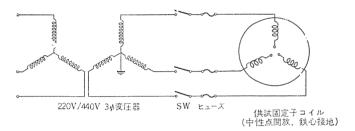


図 2. 固定子 コイル のじんあい付着試験回路 Dust applied test circuit of stator coil.

図 3. 人工じんあいを付着させた固定子 コイル Stator coil applied artificial dust.

いを付着させて、絶縁性能を評価する方法である。

中容量はん用電動機を対象とした人工じんあい成分の一例を表4. に示す。保水効果をもたせるため、電解質以外にとの粉および木粉を加えている。この人工じんあいの一定量を、絶縁処理の完了した \Box に均一に付着させ、 Δ 40°C、 Δ 95±5% RH の恒温恒湿そう(槽)に入れ、図 2. のように供試 Δ 1711に対して、AC 440 V、 Δ 60 Hzを、長期間にわたって印加して、他相 Δ 1711相互間および Δ 1711一鉄 心間の絶縁抵抗の変化を測定する。

図 3. に人工じんあいを付着させた固定子 コイル, 図 4. に絶縁抵抗の変化を示したが, 現行の特殊ポリエステル線を使用した固定子 コイルは, 1,000 時間付近でほぼ一定値に近づき, 著しい変化は見られず, 絶縁性能がきわめてよいことがわかる。

とれまで、中容量はん用電動機を中心に述べてきたが、小容量は ん用電動機、船舶用電動機、塩分の多い臨海地帯で使用される電動

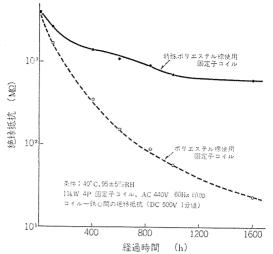


図 4. 人工じんあいを付着させた固定子 コイル の 絶縁抵抗変化

Insulation resistance characteristics of stator coil applied artificial dust.

表 5. 水溶性切削油剤 Water-soluble cutting fluid.

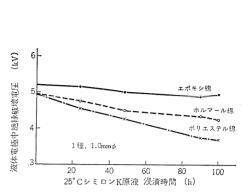


図 5. 切削油剤浸漬後の エナメル 線の絶縁破壊 電圧変化

Breakdown voltage of enameled wires dipped in cutting fluid.

(JIS K 2241)

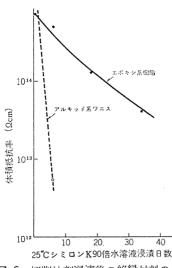


図 6. 切削油剤浸漬後の絶縁材料の 絶縁抵抗変化

Insulation resistance characteristics of insulation dipped in cutting fluid.

WI和	エマルジョン形	鉱油および界面活性剤を主成分とし, 水に加え て希釈すると白濁するもの
W 2 和	ソリューブル形	界面活性剤を主成分とし,水に加えて希釈する と透明または半透明になるもの
W 3 和	ソリューション形	無機塩類を主成分とし,水に加えて希釈すると 透明になるもの

機などに対しても,使用環境の調査に基づいて人工じんあいを定め, 絶縁組織の耐環境性評価を同様に行なっている。

とのような評価によって、多湿場所、塩分の多い場所、じんあいの多い場所などで使用するのに適した電動機絶縁組織も確立しており、長年の実績によって、信頼性は十分実証されている。

3.2 工作機用電動機

工作機の切削油剤として、現在では水溶性切削油剤が広く使用されている。JIS K 2241 に、その性状および成分が規定されているが、これらは有機 ァミン、亜硝酸 ソーダ、 界面活性剤などを主体にしており、 電動機 コイル にふりかかった場合、 絶縁材料の物性に影響を及ぼすばかりでなく、 高い比導電率を示すため、 コイル の絶縁抵抗を低下させ、絶縁破壊をひきおとすととがある。 表 5. に水溶性切削油剤の種類を示す。

従って、工作機用電動機の絶縁組織を開発するにあたって、耐切削油剤性の良い構成材料を選定すると同時に、絶縁処理を完了したコイルまたは実機について、 絶縁性能の評価を行なっておく必要がある。

水溶性切削油剤 シミロン K (JIS K 2241, W 3 種相当) に浸漬した場合の、エナメル 線および絶縁処理用樹脂の絶縁性能変化を、図 5. および図 6. に示す。それぞれ エポキシ 線および エポキシ 系樹脂が優れている。

次に実機絶縁組織の評価について述べる。 図 7. に示す内容積 1 m^3 の噴霧装置に実機を固定し, 8 時間運転,その後 16 時間休止させ,運転中には \mathfrak{b} \mathfrak{s} \mathfrak{g} $\mathfrak{$

開放防滴形 $3.7\,\mathrm{kW}$ $4\,\mathrm{P}$ の L ポキシ 系樹脂による絶縁処理を行なった電動機と F ルキッド 系 D ニス による絶縁処理を $4\,\mathrm{D}$ 何なった 電動機

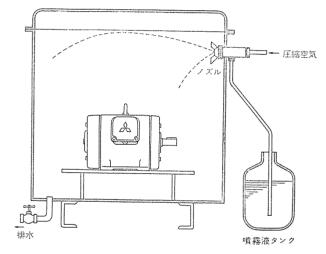


図 7. 噴霧試験装置 Spray test apparatus.

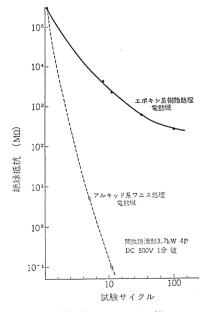


図 8. 工作機用電動機の絶縁抵抗変化 Insulation resistance characteristics of motor for machine tools.

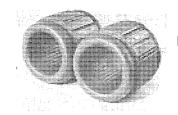


図 9. 工作機用 電動機固定子 □イル (0.75 kW 4 P) Stator coil of motor for machine tools.

表 6. 腐 食 性 物 質 Corrosive media.

電動機の構成材 料に及ぼす影響	腐食性物質
非常に大である	硫酸,第2鉄塩,塩酸,塩素,硝酸,か性ソーダ,酸化窒素, ふっ素酸,クロールスルフォン酸
大である	中性塩,亜硫酸ガス,りん酸
中である	二酸化炭素,硫化水素

表 7. 各 種 樹 脂 の 耐 薬 品 性 Resistance against chemicals of various resins.

薬 品	ポリエステル	エポキシ	シリコン	アルキッド
弱酸	•	•	•	•
強酸	0	Δ	Δ	0
弱アルカリ	0	•	0	0
強アルカリ	Δ	0	•	Δ
有機溶剂		POALAGE STATE		
アセトン	Δ	Δ	0	Δ
エチルアルコール	•	•	•	•
トリクレン	Δ	0	Δ	
トルエン	0	•	Δ	0
ベンゼン	0	•	Δ	0

注) ⑥ 良好, ○ やや良好, △ 弱

との絶縁抵抗の変化を測定した結果を、図 8. に示す。 エポキシ 系樹脂処理を行なったものは、水溶性切削油剤に対してきわめて優れていることがわかる。

図 9. に絶縁処理を行なった 工作機用電動機固定子 コイルを 示すが、当社では、 とれを CP (Chemical protected) 処理と称しており、需要家各位のご好評をいただいている。

3.3 防食形電動機

化学工業・薬品工業などにおいて取り扱われる物質の中には、腐食性ガスや液体が多く、このような腐食性物質が存在する環境では、防食形電動機が使用されている。 表 6. に腐食性物質の代表例を示すが、それ自身あるいは水に溶解して、水よりも高い比導電率をもつ物質も多い。従って、耐食性の優れた絶縁材料を選定すると共に、工作機用電動機の場合と同様に、 絶縁処理を完了した コイル または実機についても絶縁性能の評価を行なう必要がある。

金属材料・塗料などは、腐食性 ガス ふん囲気または腐食性物質の 霧状態の中で耐食性を評価しているが、絶縁材料の場合、浸漬法に よって、重量・寸法・抗張力・伸び・外観など各種物性の経時変化 を評価する場合が多い。 表 7. に各種樹脂を薬品に浸漬した場合の 外観変化を示す。

当社では、防食形電動機の絶縁処理用に独特の ダイヤレジン を使用 し、コイル 表面に厚い保護層を形成すると同時に、真空含浸によって

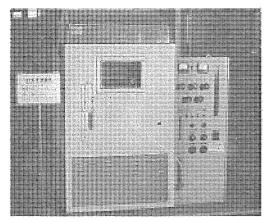


図 10. ガス腐食試験機 Corrosion test instrument.

内部まで完全に充てん(塡)しており、絶縁性能低下の原因となる空 げき(隙)は皆無となっている。

このような防食形電動機絶縁組織の耐環境性評価の ため に, 図 10. に示す ガス 腐食試験機や工作機用電動機で述べた噴霧装置を用い,必要な環境状態とした中へコイルまたは実機を入れ, 絶縁抵抗,絶縁耐力などの経時変化の測定および表面状態の観察を行なっている。

4. む す び

電動機絶縁の耐環境性を優れたものにするためには、エナメル線、 薄葉材料、絶縁処理 ワニス または樹脂など個々の材料物性が、 特殊 環境下においても良好であることと同時に、 電動機 コイル の絶縁処 理により、コイル 内部が、よく保護されていることが必要であって、 耐環境性評価の主目的は、 絶縁処理による コイル 内部保護の良否を 評価することにあるといっても過言ではない。

はん用電動機を例にとって、多湿場所、塩分の多い場所、じんあいの多い場所などで使用される電動機、工作機用電動機および防食 形電動機の絶縁を対象とした耐環境性評価について述べたが、その他の特殊環境用電動機絶縁についても、各々の評価方法を確立し、信頼性の高い電動機を顧客に提供している。

終りに、本報告のために種々のデータ、アドバイスをいただいた関係 各位に謝意を表する。

参考文献

- (1) 電気学会 電気設備防食専門委員会:電気学会技術報告,第65号(昭39)
- (2) 山本:三菱電機技報, 40,951 (昭41)
- (3) 伊藤ほか:三菱電機技報, 40, 1,106 (昭 41)
- (4) 小島ほか:三菱電機技報, 42, 915 (昭 43)

ハーメチックモータ絶縁の評価

榎本 順三*·玉越泰彦** 戸崎保弘***·時田祐佐***·山本勝治***

Evaluation of Hermetic Motor Insulation

Central Research Laboratory Junzô Enomoto

Manufacturing Development Laboratory Yasuhiko Tamakoshi
Shizuoka Works Yasuhiro Tozaki • Yûsuke Tokita • Katsuharu Yamamoto

Improvement of thermal resistance is required for the improvement of the performance and reliability and also for the reduction of the weight and volume of hermetic motors used for refrigeration and air conditioning. It is then necessary to evaluate and decide the insulation systems of motors with accuracy in a short period. Differing from ordinary motors, hermetic motors are to operate in atmosphere filled with sealed-off refrigerant and refrigerator oil, which asks for a special method in the evaluation of the insulation.

In this article are described the screening tests of thermal resistant insulating materials, the outlines of a functional evaluation test equipment newly developed by Mitsubishi, and the test on actual machines as ultimate evaluation.

1. まえがき

最近の冷凍空調機器の需要の伸びは著しいものがあり、これに伴う製品の多様化、要求される品質の高度化などにより、これらに使用される ハーメチックモータ (密閉形冷凍機用電動機) の信頼性、性能向上に対する要求も次第に高度になってきている。

すなわち、ハーメチックモータの絶縁に関しては、次のような要求がある。

- (1) 小形軽量化,圧縮機騒音のしゃへい,製品の多様化に対処するための耐熱性向上
 - (2) オールシーズンタイプのルームエアコンの増加による長寿命化
- (3) 生産 ライン の自動化、省力化を計るための絶縁組織の簡略 化
 - (4) 世界的な材料入手難に対する代換品の検討

これらの要求に対処するためには、絶縁材料の評価を正確かつ短 期間に行なら必要がある。

絶縁材料の耐冷媒性試験法としては、単体評価試験・機能評価試験・実機試験がある。単体評価試験は材料のスクリーニックを目的として行なわれ、主としてオートクレーブ内での静的な挙動を評価するものである。従来、単体評価試験でスクリーニックされた絶縁材料の絶縁組織としての最終評価は実機試験で行なわれてきたが、実機試験は経費・労力が甚大であり、かつ、製造上の変動要因やモータ以外の要因が介入し、試験条件の安定化がむずかしいという欠点がある。そこで、単体評価試験と実機試験の間に正しく絶縁組織を評価する機能評価試験が必要となる。しかし、ハーメチックモータ絶縁組織の機能評価試験には、はん(汎)用電動機のモートレット試験法のように一般化された方法がなく、各社とも独自の方法で行なっているのが現状である。当社では、従来報告されているよりもより実機に近い状態で試験できるハーメチックモータ絶縁機能評価試験装置を開発したので、その概要と、耐熱絶縁材料のスクリーニックを目的とした単体評価試験および絶縁組織の最終評価としての実機試験について述べる。

2. 絶緣材料単体評価試験

2.1 マグネットワイヤ

ハーメチックモー2 に使用するマグキットワイヤを単体で評価する場合には、巻線性、耐熱衝撃性、耐油性、耐ワニス溶剤性、含没ワニス処理後の密着性などの一般特性のほかに冷媒に関与する特性、すなわち、抽出性、ブリスタ特性、過負荷特性、耐クレージング性および冷媒中における熱劣化特性、耐湿熱性などが問題となり、その試験条件については種本の検討がなされている(1)~(1)。

ここでは、耐熱耐冷媒用巻線を選定するために冷媒系における熱 劣化特性を検討した結果につき述べる。

2.1.1 供試マグネットワイヤとその耐 R 22 性

冷凍・空調機器に使用される冷媒には R 12, R 22, R 502 などがあるが、とこではとくに、空調機器に使用され、絶縁材料に対しても活性であるとされている耐 R 22 性について述べる。表 1 に示すマグネットワイヤ につき抽出性、 プリスタ 特性および軟化特性を調べた結果を表 2. に示す。

抽出性試験については、R 22 還流 サイクル 法(4)、NEMA で提案 されている フレボン 抽出試験法(6) および JIS C 3003 の トリフレン 抽出 法などがあるが、 ここでは、 簡便さと R 22 より クロロホルム による 抽出量の方が多いという過去の経験から、 クロロホルム を使用し ソック

表 1. 供 試 マグネットワイヤ Test specimens of magnet wires.

マグネットワイヤ	[H]	M	遵体径.	J + 11
PVF-M	ウレタン変性からつ	- A-	1.0	A
PEW	ボリエステル		1.0	В
EI-A	ボリエステルイミド		1.0	C
EI-B	米リエステルイクド		1.0	В
AI/EI-A	ポリエステルイミド ポリアミドイミド	サナルコート	1.0	A
AI/EI-B	ポリエステルイミドボリアミドイミド	グブルコート	1.0	A
AI/EI-C	ポリエステルイミドポリアミドイミド	ダブルコート	1.0	C
AIW-A	ポリアミドイミド		1.0	В
AIW-B	ポリアミドイミド		1,0	D

表 2. 各種 マグネットワイヤ の耐 R 22 性 R 22 resistance of various magnet wires.

マグネットワイヤ	クロロホルム 抽 出 (%)	関係和性体行中(20)	耐 ブ リ ス タ 性 皮 膜 の 変 化 (設せき条件室温 7日) 再加熱条件180°C10分)
PVF-M	0.030	90	なし
PEW	0.042	65	多版
EI-A	0.011	86	かなり多量
EI-B	0.219	80	少 鼠
AI/EI-A	0.004	100	かなり多量
AI/EI-B	0.003	92	多量
AI/EI-C	0.010	96	ごくわずか
AIW-A	0.008	56	少量
AIW-B	0.006	65	少量

スレー 抽出器により抽出した。その結果では、ポリエステルイミド線 EI-B が大きな値を示したが、その他の試料については抽出量は少なく問題にはならない。

ブリスタ 特性は R 22 への浸漬条件および浸漬前後の試料の 処理条件によって影響されるが $^{(3)}$ ($^{(6)}$)、 ここでは、135°C で 8 時間真空加熱した試料を R 22 に室温で7日間浸漬後、直ちに 180°C の乾燥炉に10分間入れた後取り出して、皮膜表面を観察した。その 結果を表2. に示す。なお、浸漬後の加熱温度については 170°C 以下でも試験したが、各試料とも ブリスタ の発生は見られなかった。

軟化特性の評価においても、浸渍温度と時間および浸渍から測定までの間の試料の処理方法が影響すると思われるが、ここでは、フレオンの吸収飽和量、浸渍処理後のフレオンの揮発、熱劣化の影響などを考慮して、オートクレーブ中100°Cで7日間浸渍処理し、処理後直ちに取り出して試験までクロロホルム中で保管し、摩耗試験を実施した。浸渍後の摩耗回数の浸漬前に対する保持率を衰2.に示す。ポリエステル線 PEW、ポリアミドイミド線 AIW-A、-Bの低下が大きく、ついでポリエステルイミド線 EI-A、-Bの低下が目立つが、その他のものの低下は小さい。

当社では、これらの試験のほかに、冷媒中における耐湿熱性、耐熱軟化性、耐 クレージング 性および ワニス との適合性などについても検討し、マグネットワイヤ の選択を行なっている。

2.1.2 冷媒中における熱劣化

冷媒中における熱劣化と空気中における熱劣化を比較するために, 次のような試験を実施した。

冷媒中の熱劣化試料は、マグネットワイヤを冷凍機油とともに オートクレーブ に入れ、脱気・脱水と予備加熱を目的として 135℃ で 8 時間 真空加熱処理を行なった後、R 22 を冷凍機油と 1:1 の割合で充てん(塡)し、175℃ で 7 日間加熱する。加熱終了後 アセトンで洗浄した後、120℃ で 3 時間加熱処理する。また、空気中の熱劣化試料は 175℃ の オーブン中で 7 日間加熱する。このようにして熱劣化させた後の摩耗回数と絶縁破壊電圧の保持率を表 3. に示す。 その結果、絶縁破壊電圧についてはウレタン変性 ホルマール線 PVF-M の冷媒中の劣化が著しく測定不能となった以外、空気中と冷媒中の劣化に顕著な差は見られなかった。ところが、摩耗試験においては、PEW および AIW では空気中に比して冷媒中での低下が大きいのに対し、EI および ポリエステルイミドと ポリアミドイミド の ダブルコート線 AI/EI-B では反対に空気中での低下が顕著である。この相異が試料の化学的変化によるものか物理的な変化によるものかは明らかでない。

そこで, 化学的変化の点から劣化程度を比較するために, 熱天び

表 3. R 22-冷凍機油中および空気中の熱劣化による各種 マグネットワイヤ の特性変化(175°C 7 日)

Abrasion and dielectric strength of various magnet wires after thermal aging in R 22-oil and air.

マグネット	耐摩耗	性 (保持率)	破壞電	圧 (保持率)
ワイヤ	R 22-冷凍機油	空 気 中 %	R 22-冷凍機油 %	空 気 中 %
PVF-M	8.5	19.7		93.9
PEW	31.3	100.0	102.5	96.5
EI-A	97.9	45.8	105.5	119.0
EI-B	88.5	92.0	83.3	103.0
EI/AI-A	82.4	80.3	99.5	80.3
EI/AI-B	74.0	27.6	86.7	79.9
EI/AI-C	103.0	69.0	134.9	101
AIW-A	13.7	79.4	92.1	93.3
AIW-B	10.6	110.0	92.1	100

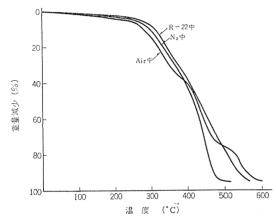


図 1. PVF-M 線の各種ふん囲気における熱重量選定 (TG) Thermogravimetry (TG) of PVF-M wire in air, N₂ and R 22.

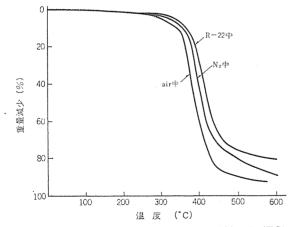


図 2. PEW 線の各種ふん囲気における熱重量測定 (TG) Thermogravimetry (TG) of PEW wire in air, N₀ and R 22.

ん(秤)による一定昇温での重量変化と、オートクレーブによる等温加熱 (250°C)での重量変化を測定した。熱天びんは、島津製作所製 TGA -20 を使用し、空気中、窒素 ガス および R 22 の気流中 (70 ml/min)で、昇温速度 10°C/min で 600°C まで 測定 した。代表例として、PEW および PVF-M の熱天びんによる測定結果を図 1., 2. に、250°C における重量減少の経時変化を図 3. に示す。 熱天 びんにおいても等温経時変化においても、 R 22 中では空気中はもちろん 窒素中よりも重量減少が少なく安定であることがわかる。このことは他の試料についても同じであり、 R 22 が マグネットワイヤ 皮膜の 酸化

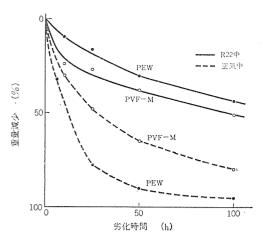


図 3. PVF-M, PEW 線の等温加熱 (250°C) による重量変化 Weight loss of PVF-M wire and PEW wire after thermal aging in air and R 22.

分解などの劣化を抑制し、化学的変化に対し劣化促進などの悪影響を与えないであろうことを示唆している。しかるに、 表 3. に見られるように、t-10ループ試験における PEW および AIW の耐摩耗性の低下が空気中よりも大きいのは、 R 22 による溶解、 膨潤などの物理的変化に起因するものであろう。

2.2 薄葉材料

スロットセル,ウェッジの対地絶縁および相間絶縁などに使用される薄葉材料としては、電気特性・機械特性に優れたポリエチレンテレフタレート (PET) が広く使用されている。しかし、PET は密閉された状態で使用される場合には比較的加水分解を受けやすいという欠点がある。密閉形圧縮機においても水分を完全に除去することは困難であり、残留水分の影響を受けることが考えられる。そこで、ポリエステル系の PET と Q フィルム (帝人製) および耐熱電動機に使用されているポリアミド系の Nomex (Du Pont 社製) につき、冷媒中での劣化に対する水分の影響を調べた。そこで水分を十分に除去した状態、フィルムの飽和吸湿および過飽和を想定した状態の3水準を定め、ガラスチューブ試験およびオートクレーブ試験前後の引張強度および伸びの変化を測定した。

2.2.1 試験法

(1) ガラスチューブ デスト

- (a) 水準 1 (水分を十分に除去した状態);85°C で 5 時間以上真空加熱乾燥した フィルム を ガラスチューブ (内容積 $6.0\sim6.5~{\rm cm}^3$) に入れ、さらに 100°C の恒温炉に一昼夜放置する。そして、あらかじめ乾燥させた冷凍機油と銅線および鉄線を入れ 80°C の温水中で 30分間加熱真空脱気した後、五酸化りん(燐)を入れた乾燥管を通して乾燥させた R 22 を冷凍機油と等量入れて密封する。
- (b) 水準 2 (フィルム の水分吸着量が飽和の状態): 温度 25℃, 相対湿度 95 %の デシケータ 中に 3 日間放置した フィルム を, あらかじめ乾燥させた ガラスチューブ に冷凍機油, 銅線および鉄線とともに入れ, 氷水中で 5 分間真空脱気した後, 水準1 と同様に R 22 を入れて密封する。
- (c) 水準 3 (フィルム の飽和吸湿量に対し過飽和の状態);あらかじめ冷凍機油に重量比で 5 %の水分を加えておくほかは水準 1 と同様である。

(2) オートクレーブ 試験

表 4. 各水準系内の含有水分量(概算値) Water contents in each test systems.

	試験方法	ガラスチュ・	- ブ試験 (容量	6.0~6.5cc)	オートクレ ープ試験
	711/4	PET-B	Qフィルム	Nomex	(容量 31)
飽和吸湿量	40∼50 % RH	0.4~0.5 %	0.3~0.4 %	4~5%	
(室温)	90~95 % RH	0.9~1.0 %	0.7~0.9 %	8~10 %	
試料重量	フィルム	80∼85 mg	80~85 mg	90~95 mg	0.8~0.9 g
64 PT III III	冷凍機油	Ìg	1 g	Ιg	700 g
水	坤 1	<0.1 mg	<0.1 mg	<0.1 mg	<10 mg
水	準 2	0.5~1 mg	0.3~0.8 mg	5~10 mg	10~100 mg
水	準 3	5 mg<	5 mg<	10 mg<	3 g<

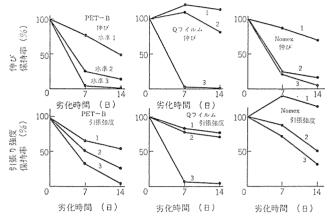


図 4. 各種 フィルム の R 22 中における耐湿熱特性 (ガラスチューブ 試験 155°C)

Hydrolytic stability of various films in R 22-oil.

に入れ、さらに 135° C で 8 時間真空乾燥し冷却後、冷凍機油と同量 の R 22 を封入する。

- (b) 水準 2;25℃, 相対湿度 95 % 以上の デシケータ 中に 3 日間 以上放置した フィルム を常態の冷凍機油とともに オートクレーブ に入れ 常温で 30 分間真空脱気後、冷凍機油と同量の R 22 を封入する。
- (c) 水準 3;常態の冷凍機油に、あらかじめ、重量比で 5%の水分を加えるほかは水準 2と同様である。

なお、ガラスチューブ 試験では1本のガラスチューブに1種類のフィルムを入れているが、オートクレーブ 試験では1回の試験に3種類のフィルムを入れている。これらの封入条件とフィルムの吸収的和水分量などを考慮して、各系における含有水分量を概算すると表4.のようになる。

このようにして封入した試料を 155°C で 7 日間 および 14 日間, 加熱劣化させ, 引張強度および伸びの経時変化を測定した。

2.2.2 試験結果と考察

ガラスチューブ 試験における,伸びおよび引張強度の保持率の経時変化を,図 4. に示す。PET は,水分を十分に除去した水準1 においても伸び,引張強度ともかなり低下するが,飽和吸湿量を仮定した水準2 ではその低下はさらに大きくなり,特に伸びについては 7日間で $20\sim30$ %にまで低下する。 さらに,過飽和を仮定した水準3 においては 14 日間で伸び,引張強度 ともその特性を完全に失っている。ところが,同じポリエステル系でも Q フィルム は水準1 と水準2 との間に顕著な差は見られず,その特性の低下も小さい。しかし,それでも水準3 になると PET と 同じように加水分解が進むためか

表 5. 各種フィルムの耐湿熱特性 (155°C7日) Hydrolytic stability of various films in R 22-oil.

K	フィルム	PE'	г-в	Q-7	ィルム	Noi	nex
水蔵験	市。	引張強度 保 持 率 (%)	伸 び 保持率 (%)	引張強度 保 持 率 (%)	伸 び保持率 (%)	引張強度 保 持 率 (%)	伸 び 保持率 (%)
Я́ Э	1	65.2	76.2	82.2	120.2	130.0	87.3
ガラスチュ	2	50.6	20.5	78.5	110.4	89.1	25.1
1 プ	3	32.2	4,2	6.5	1.3	72.2	22.6
オート	1	68,8	143.2	86.2	189.2	170.2	99.3
トクレ	2	71.8	69.3	89.2	102.1	96.1	66.2
ープ	3	0	0	0	0	16.4	37.3

表 6. ヮニスの 耐 冷 媒 性 Refrigerant resistance of varnishes.

目更總賦		浸渍	加熱	試験		オープン	/ブリス
	外	観 1)	抗	折 力2)	kg	タ試験タ	卜 键
ワニス	R 22	R 22-油	初期値	R 22	R 22-油	R 22	R 22-油
エポキシ系 溶剤 形 ワ ニ ス	不 変	やや白味	15.7	14,2	15.5	異常なし	異常なし
エポキシ系 無溶剤形ワニス	不 変	やや白味	10.6	10.3	9.8	異常なし	異常なし

注.1) 無処理状態との比較

2) IEC の規格案に準じたヘリカルコイル試験法により求めた

伸び、引張強度とも急激に低下する。このことは、PET と Q フィルム は同じ エステル 構造を有しているため、水準3のように飽和吸湿量 に対し過飽和になっている状態では加水分解が著しく進行するが「の、水準2の段階では PET と Q フィルム とに差があり、Q フィルムの方が冷媒中における耐湿耐熱特性にすぐれていることがわかる。

これに対し、ポリアミド系の Nomex においては、 Q フィルム とは逆に水準1と水準2との差が大きく、水準2と水準3との差が小さい。これは、表 4. に見られるように ガラスチューブ 内の水分量の差によるものと考えられる。

次に、オートクレーブ 試験で得られた結果を ガラスチューブ 試験の結果と 比較したのが表 5. である。 オートクレーブ 試験における水準2の保持 率は、 いずれの フィルム についても ガラスチューブ 試験の水準2の保持 率よりも大きな値を示している。 このことは、オートクレーブ 試験では 試験容器の大きさが ガラスチューブ に比してかなり大きいので、吸着されていた水分が加熱によって系内に拡散水分の濃度が低くなったた めと考えられる。

2.3 ワニス

PVF-M 線によって作成した ヘリカルコイル を エポキシ 系溶剤形 ワニス および無溶剤形 ワニス で処理し、R 22 および R 22-冷凍機油の混合液 (重量比1:1) にそれぞれ浸漬し、 120° C で 168 時間加熱劣化させた後、外観の観察および抗折力の測定を行った。 さらに、1-プップリスタ試験として、浸漬加熱試験後の試片を直ちに 150° C の乾燥炉に入れ 1 時間加熱した後の表面状態を観察した。 その結果を表 6. に示す。 浸漬加熱試験後の外観については、R 22 のみの場合は異常は認められないが、R 22-冷凍機油の場合には、表面がやや変色していることから、冷凍機油の影響を受けていることが考えられる。抗折力および 1-プンブリスタ 試験の結果については、特に大きな変化はなく、両 10年の一方の一方域性に顕著な差は認められない。 この他、R 22 による抽出、電線との適合性、冷媒中における熱劣化特性な

どについても検討している。

3. 絶縁機能評価試験

単体評価試験で選択された絶縁材料は、つづいて、これらを組合 せた絶縁組織としての機能評価試験が行なわれる。N-メチックモータは 使用される条件が一般の電動機とは異なるため、その絶縁機能評価 試験にも特別な方法が必要であり、種々の試験方法が提案されてい る(3),(8)~(10)。これらの方法は、いずれも、モートレットオートクレーブ法と 称されているもので、オートクレーラ内に密閉された冷媒(R12, R22 など)と冷凍機油からなるふん囲気内に モートレット (IEEE Std. No. 117 に準拠)(11)を置き、 これに通電加熱と通電断による自然冷却か らなる温度 サイクルと、 気化した冷媒を オートクレーブ 上部に取付けら れた冷却管によって冷却し、凝縮液化させ液だめにためた後、モート レット上に滴下するという ヒートショック を加えて、 絶縁組織の機能評 価を行うものである。しかし、これまでに報告されている方法では、 液状冷媒の滴下状態が不十分であったり、滴下条件の制御も困難で あった。 そこで、 当社では オートクレーブ の外部に 冷媒液化回路を備 え、液冷媒の滴下条件を自由に制御できる新方式の ハーメチックモータ 絶縁機能評価試験装置を開発した。以下その概要につき述べる。

3.1 試験装置および試験方法

試験装置の外観およびその概略図を、図 5., 6. に示す。 試験容器は内容積約 6l の圧力容器(最高使用圧力 $100 \, \mathrm{kg/cm^2}$)で、内部の状態を観察するために、直径約 $5 \, \mathrm{cm}$ ののぞき窓が $3 \, \mathrm{dl}$ 所についている。この容器のふたに、図 7. のように $2 \, \mathrm{dl}$ の $5 \, \mathrm{cm}$ のがけた後、冷凍機油 $1 \, \mathrm{kg}$ を入れ真空脱気してから、冷媒 $1 \, \mathrm{kg}$ を封入する。このとき、 $5 \, \mathrm{cm}$ の約 $1/2 \, \mathrm{sh}$ が冷媒と冷凍機油中に浸漬されている。これに、容器のふたに取り付けられた密封端子を通じて通電加熱する。この試験装置を $2 \, \mathrm{cm}$ 数像に

試験条件を図 8. に示す。温度 サイクル は、加熱 5 分、冷却 5 分を 1 サイクル とし、通電電流は電線直径が 1 mm の 場合、 運転開始時 の起動電流を模凝して 30 A を 20 秒間流した後、設定温度に応じて 定常電流を 10~18 A の間で調節する。 温度は試料に埋め込んだ熱 電対により検出し、温度調節器により通電電流を断続して調節する。

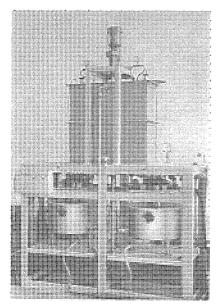


図 5. ハーメチックモータ絶縁機能評価試験装置 Appearance of functional evaluation test equipment for hermetic motor insulation.

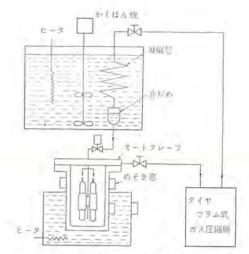


図 6. 試験装置概略図 Schematic diagram of test equipment.



図 7. モートレット 形状と取付け状況 Motorette mounted in autoclave.

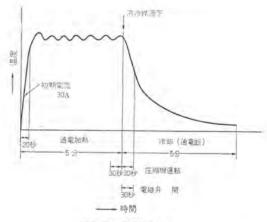


図 8. 試験サイクル Thermal cycle.

加熱 サイクル 終了 30 秒前から 1 分間 ガス 圧縮機を運転し、 加熱によって気化した冷媒を圧縮するとともに、水そう(槽)内に設置した凝縮管で液化させ液だめにためた後、加熱 サイクル 終了と同時に電磁弁を開き、液冷媒を モートレット 上に滴下し、冷却と ヒートショック を与える。液冷媒の滴下は通電加熱時にも可能であるが、この場合は、液冷媒が滴下後直ちに気化し モートレット に対する冷却効果が少ないことから、加熱 サイクル 終了直後とした。

との間の圧力容器内の圧力は、通電加熱時は ほ E 一定 で 約 11 kg/cm² であり、ガス 圧縮機の運転とともに徐々に低下し、電磁弁を 開く直前が最低で約 9 kg/cm² となる。 その後は、 滴下された液冷

媒の気化により徐々に増加し、ガス圧縮機停止・電磁弁閉の直前が 最高で約13 kg/cm²となり、その後は徐々に低下し約10 kg/cm²となる。このように、この試験容器内の圧力は約9~13 kg/cm²であり、これは従来より報告されている方法での試験容器内の圧力約40 kg/cm²よりも低く、実機の圧力とほとんど同じであり、より実機に近い試験条件となっている。また、通電加熱時の冷媒と冷凍機油の混合液および気体冷媒の温度は、モートレットの設定温度が180℃の場合で、約75℃および60℃である。

試料は、IEEE Std. No. 117 準拠のモートレットで、線間絶縁の評価の場合は、マグネットワイヤ 2本を並列巻とし、 両線間に AC 100 V を、相間および対地間絶縁の評価の場合には、上口と下口の二つのコイル間およびコイルとスロットの間に AC 400 V を常時印加し、 破壊までの寿命サイクルを求める。

耐熱性向上にあたっての絶縁組織の機能評価試験は現在実施中であるが、その結果の報告は次回にゆずることにして、ここでは一例として、絶縁 9=2 処理方式改善の検討のため新旧 9=2 処理方式の比較評価を行った結果について 述べる。 供試試料は、IEEE Std. No. 117 準拠の 100

これらによれば、両方式間に顕著な差は認められないが、新方式の方がやや良いようである。 破壊個所は、いずれもコイルエンド上部のコイル内部であった。これは、この部分の温度が最も高く、またヒートショックも大きいためであろう。試験後の試料表面の観察においては、ウレタン変性ホルマール 線を使用しているためか、これまでに報告されているように ブリスタ の発生は見られなかった(13)。また、ワニス 処理無の試料で、ブラスチックフローによるものと思われる融着現象が見られたので、これが絶縁破壊に影響を与えているものと考えられる。

表 7. 供試モートレットの 絶縁 仕様 Insulation specification of motorettes.

総 緑 緑 科	絶録ワニス処理	=	4	JL.	z	ロッ	ŀ	也儿	ゥ	x	9	ž
4-1-1-1 A	ウレタン変性 エポキシワニス 旧方式	100		変性ホル	oji.	gж	ス	テル	41	y x	ステ	4
モートレット B	エポキシ系ワニス 新方式	2本並		55 B-V		0.2	27 1			0.1	9t	

表 8. モートレット による寿命試験の結果 Results of functional evaluation test,

AN AND THE SECOND STREET	寿 命 女	1 9 2
絶縁ワニス処理方式	160°C	180°C
旧 方 式	892	37
新方式	1,012	69

4. 実機試験

単体評価試験で選別された絶縁材料は、次に、機能評価試験により絶縁組織として評価されるが、最終的には実機試験によって信頼性の確認を行う必要がある。実機試験を分類すると、短期加速寿命試験、圧縮機単体寿命試験、長期ユニット組込寿命試験がある。

短期加速寿命試験としては、モータの保護装置が作動する異常な状

態を継続して負荷し、その条件を段階的に過酷化し、モータが破壊するまで試験する方法が行なわれる。この試験は、劣化機構が通常の 運転とは必ずしも一致するとは限らないので、一般には絶縁組織の 相対的な比較試験として行なわれることが多い。

圧縮機単体寿命試験は、冷凍空調器における圧縮機の最も過酷な 使用条件を想定した、二、三の試験を行なっている。まず、圧縮機 の過負荷におけるモータの寿命を確認するため、 圧縮機を適当なテ ストベンチ に装着して諸条件を過負荷に セット し、相当期間連続運転す る。との試験では、E-タが焼損することはまれで、結果の判定は寿 命試験終了後、圧縮機を解体して モータの マグネットワイヤ、薄葉材料、 冷媒および冷凍機油等を分析し劣化状態を調べる。しかし絶縁破壊 は起きていないので、寿命となった時点の特性を知ることはできな い。次に、過負荷試験とは逆に、軽負荷における寿命試験も行なわ れる。軽負荷においては、圧縮機に冷媒が液状で戻るようになり、 圧縮機の構造によっては モータ 巻線に液状冷媒が直接適下される と ともあり、モータに対して過酷な条件となる。この試験結果の判定は, ある一定期間で運転を打切り、圧縮機を解体して諸材料を分析調査 することによる。その他、圧縮機の起動・停止時の機械的ストレスの 影響を調べるため、過負荷状態での断続試験も行なわれる。この場 合の判定も同様である。

最後に、ユニット 組込長期寿命試験があるが、これは実用試験として長期にわたって行われる。冷蔵庫等は年中使用されているので問題はないが、ルームエアコンは従来の冷房専用からオールシーズンタイプに移行しつつあり、寿命試験の方法、結果の判断が複雑化している。

以上,現在行なわれている実機試験について述べたが,短期加速 寿命では絶縁破壊が起きて寿命を知ることができるが, 労化機構が 必ずしも実用運転と一致するとは限らないこと, 一方,圧縮機単体 寿命試験,ユニット組込長期寿命試験では破壊が起らず,寿命を知る ことができない。従って,実機試験で短期に真の寿命を推定しらる 適確な方法を決めることが今後の課題である。

5. む す び

以上, ハーメチックモータ 絶縁の評価につき, 単体試験・機能評価試験・実機試験と順を追って述べてきたが, 労化機構や各試験間の相関関係などについては不明の点が多いので, これらについては今後さらに研究を進めて行きたい。

最後に、当研究を進めるにあたって、ご指導、ご協力をいただい た中研・生研および静岡製作所の関係各位に深謝の意を表する。

参考文献

- (1) M. V. Thierry: Proceedings of the Tenth Electrical Insulation Conference, 71 C 38-EI 54 (1971)
- (2) K. S. Larime et al.: Proceedings Tenth EIC, 71 C 38-EI 39 (1971)
- (3) 徳永・土井ほか:日立評論, 55. No. 4, 353 (昭 48)
- (4) 安福ほか:古河電工時報, No. 51, 45 (昭 47)
- (5) W. W. Wareham: Proceedings Tenth EIC, 71 C 38-EI 113 (1971)
- (6) J. P. Hurtgen: Proceedings Tenth EIC, 71 C 38-EI 58 (1971)
- (7) R. C. Golike et al.: J. Phys. Chem., 64, 895 (1960)
- (8) H. L. Emmons: Insulation, Dec., 53 (1967)
- (9) S. Nishizaki et al.: Proceedings Ninth EIC, 69 C 38-EI
- (10) 虫朗·山崎ほか: National Technical Report, 17, No. 4, 356 (1971)
- (11) IEEE, Std., No. 117 (1956)
- (12) N. Okubo et al.: Proceedings Eleventh EIC, 73 CHO 777
 -3 EI-26 (1973)

高圧水中モートルの絶縁

脇坂信隆*·和田義彦*·川口五朗*

Insulation System of High Tension Submersible Pump Motors

Nagoya Works

Nobutaka Wakizaka • Yoshihiko Wada • Gorô Kawaguchi

Demands on submersible motors, used for pump driving in the field of industry, civil engineering work and irrigation in agriculture, are ever increasing because their advantages and economy are recognized by public. Their capacities are gradually becoming larger and high voltage applications are also in increasing demands for such ranges as 3,000 V and 6,000 V. Since in 1965, Mitsubishi has delivered a good number of high tension submersible motors, which have been operating with no troubles. This verifies that the high tension machine has the same reliability as the motors of the same category operating on the ground.

This article introduces the manufacturing process and operation results of these motors to potential users for their information.

1. まえがき

工業・土木・農業用水・水道水などのポップ駆動用としての水中モートルボップの需要は、その利点と経済的なメリットが一般的に認識されるに従って増加の一途をたどっている。しかも大容量機の利用がますます拡大される方向にあり、電源設備・運転効率・小型化などの効果が認められ、高圧級 $(3,000\,\mathrm{V})$ 、および $6,000\,\mathrm{V})$ での需要が急激に増加している。図 1. に我が国最大級の高圧水中モートルの外観を示す。

当社は1965年4月、我が国で最初の3,000 V 級150 kW 4 極の実用機を納入し、さらに研究改良を加え1969年4月には、世界的にも初めてと思われる6,000 V 級高圧水中モートルを製作するなど、その間多数の高圧水中モートルが納入されたが現在まで全く無事故で運転されていることからも、一般地上運転される高圧モートルの絶縁信頼性と比較して何らそん色ないことを実証している。

本文では絶縁性能とあわせて長期間つちかわれてきた製造技術の 成果の一部を紹介して各位のご参考に供したい。

図 1. 雫石上地改良事業所納め 高圧水中 モートル (440 kW 4P 3,000 V 50 Hz) High tension submersible motors (440 kW 4P 3,000 V 50 Hz) delivered to Shizukuishi,

2. 絶緣構成

高圧水中モートルの絶縁構成は図 2. に示される。この図で明らかなように導体部分と特殊合成 ゴム 層、特殊合成樹脂層、および補強層から成る。コイルは陸上モートルと同様のフォームドコイルを作成し、導体上に特殊 ゴム 層と特殊合成樹脂層を巻き付け加熱融着し、完全一体化することによりきわめて耐水性の高いボイドレス 絶縁が形成される。各絶縁層の厚みは、それぞれの分担電位が最適な値になるよう絶縁設計されている。

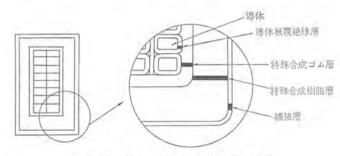


図 2、高圧水中 コイル の絶縁構成 (3,000 V)
Insulating construction of Mitsubishi high tension submersible coil.

3. コイルの製作

ポイドレス 絶縁を施す場合,導体相互問,導体とゴム 層間,ゴム 層門,ゴム 層と合成樹脂層間および合成樹脂層に空気が残存するのを完全 に防止しなければならず,巻線作業上きわめて高度な技術を必要と

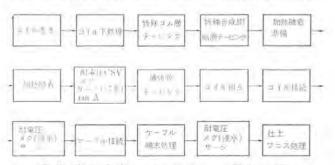


図 3. 高圧水中モートルのステータ製作手順 Stator manufacturing process for high tension submersible motors.

する。図 3. に代表的な高圧水中モートルのステータ製作手順を示す。

3.1 電線の特性

電線は一般地上高圧 コイルと同様,耐熱性・耐熱衝撃性・耐磨耗性等の電気的,機械的特性に優れ巻線加工性の良い平角線を使用している。また,最近は真空スイッチの普及にともない急しゅん(峻)な開閉サージの侵入が予想されることから,ターン 間絶縁はサージ 電圧との絶縁協調を考慮して十分な絶縁耐力をもたせている。

高圧水中 コイルは、常時水と接触していることから冷却効果は良く運転時のコイルの温度上昇も低く押さえてあるので、長期間の熱劣化による素線絶縁の絶縁特性の低下については陸上 モートルのコイルに比べ有利である。

3.2 コイルの下処理

形巻された コイル は運転中の振動による トラブル、 導体相互間に コロナ 発生がないよう、また、コイル の絶縁体を加熱融着する時の導体の崩れを防止する目的などにより、 特殊耐熱 ワニス を使用して入念な ワニス 処理が行なわれている。

ワニスの選定にあたっては

- (1) 電線との親和性
- (2) 導体相互間への充てん(塡)性
- (3) ゴム層との接着性
- (4) 可とら(撓)性

等について注意せねばならない。

3.3 コイルのテーピング

ゴム 層は導体と合成樹脂層の間に ボイドをなくし, かつ, 運転時の 導体と合成樹脂層間の温度変化に対応する緩衝機としての重要な役 割をしている。

特殊合成ゴムに要求される材料特性を列記すると

- (1) 短時間の加硫で電気的,機械的特性が出せる
- (2) テープ相互間に自己融着性がある
- (3) 導体, 特殊合成樹脂との接着性に優れている
- (4) 導体間のすき間をうめることができるよう適当な流動性を 持っている
 - (5) 耐水性が優れている
 - (6) テーピング性が良いこと

等が必要である。

一方、合成樹脂層はその役割からいって完全な ボイドレス でなければならない。また、化学的、電気的、機械的特性においても安定したものが要求されることは言うまでもない。

これら特殊合成 $\upsigma \upsigma \up$

- (1) コイルの下処理を入念に行ない導体相互間,導体とゴム層間はボイドレスにしておくこと。
- (2) テー-プはそれぞれの材料に応じて適正な テンション を 与 え る こと。
- (3) テーープは均一な テンション でしわ, すき間のないよう適正な ラップで, しかも密着して巻くこと。
- (4) テープ内にじんあい (塵埃), 汗, 手あか (垢) などの異物が 混入することを絶対避けること。

これら F-ピッグ 技術が ボイドレス 絶縁を形成するうえで重要であり、 陸上 E-Fル の高圧 Dイル の F-D 巻きと比べて、 その特異性と困難 性がある。

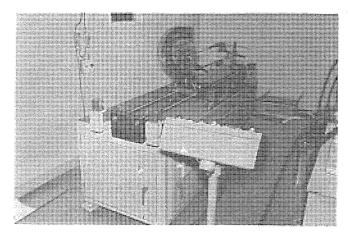


図 4. 高圧水中モートルコイルテーピッグマシン Taping machine for high tension submersible motor coils.

当社ではこれらの テーピング 作業の安定性を計るため、作業環境について特別に配慮し、 しかも十分な検討を加え専用の テーピングマシン を開発導入することにより、コイルの品質の安定と生産性向上につとめている。図 4. に テーピングマシン の外観を示す。

3.4 テープの加熱融意

テーピングの技術と共に絶縁性能を左右する要因として、テープ相互間の融着条件の決定が重要である。加熱融着条件の決定にあたっては成形法について検討せねばならない。

一般にデープの層を融着し一体化に成形する方法としては

- (1) 金型を使用する方法
- (2) 適当な テーピッグ 保護層を設ける方法

などが考えられる。金型によって成形するには

- (a) 仕上り寸法精度が出しやすい
- (b) 繰り返し使用が可能なこと

などの メリット があるが反面

- (c) コイルのサイズに応じ金型を設けなければならない
- (d) 金型にあわせて寸法を管理しながら テー-ピンク しなければな
- (e) 複雑な形状では金型の製作が困難である

などのデメリットがある。

次に テー-ピンク 保護層による成形法について述べてみる。表面保護 層を設ける目的は

- (1) 加熱融着時の テープ層の熱膨張を抑制する
- (2) テープ 層との離形の役目
- (3) 仕上げ表面をきれいにする
- (4) 適当な圧力をかける
- (5) 直接 テーープ層に高い熱をかけないようにする

などのためである。保護層の一例を示すと次のようになる。テープ層の内側から列記すると

- (1) ポリエステルテープ, テフロンテープ
- (2) 加硫 ゴム
- (3) 綿 テープ, テトロンテープ

の順となる。この方式では金型方式に比較し費用も安価になり、作業性も高度の熟練を要しないなどのメリットがあるが、仕上り寸法精度に問題がある。一般に形状が板状・棒状等の単一形状であれば成形法も比較的簡単であるが、コイルのように複雑な形状でしかもその形状を維持しながら加熱成形するには、両方式のメリットを取り入れた併用方式を採用した方がよい。

最後に加熱法について述べてみる。一般的な加熱方法は

- (1) 外部から熱風を加え加熱する方法
- (2) コイル自身に通電し加熱する方法
- (3) 液体の熱媒体により加熱する方法

等がある。とれらの方法については、一長一短がありその選定にあ たっては成形法との組み合わせにおいて決定すべきである。また、 加熱温度および時間設定にあたっては、コイルの大きさ、絶縁厚みに よって条件を変える必要がある。

3.5 コイル組立

加熱融着し完全一体化されたコイルは厳重な品質管理のもとで各種の検査・試験が行なわれ、合格したコイルのみ補強層をテーピッグしてコイル組立に送られコアに組立てられる。コイル組立てでは、工作上、揚げコイルの部分でかなりのわい(歪)力をうけるが、それには十分耐えることが確認されている。

4. コイルの絶縁性能

このようにして製作されたコイルの絶縁組織はかずかずの優れた 絶縁特性を持っていることが、詳細に試験され確認されている。表 1. は絶縁性能を一覧表にまとめたものである。

表 1. 高压水中モートル絶線特性 Insulation characteristics of high tension submersible motors.

W	H	瓜正階級	3,000 V 級	6,000 V 級	
	被 揽 /	成 元 60 Hz (kV)	40 12.1:	80 LL.L.	
	衝擊波龍岩	夏電圧 (1×40)μs (kV)	80~100	160~210	
iès	コロナ開始	電圧 10-10カーロン (kV)	6.5	8.0~11.0	
惟	コロナ電荷	の分布 (ターロシ)	1×10-10~3×10-10	1×10-10~2×10-10	
纮	能級抵抗 コイル阻	初 期 值	5×1017~1×1017	5×1013~1×1013	
A9	休 (Ω)	60°C 温水 700 日後	5×1018 以上一定	5×10 ⁽¹ 以上一定	
特	舶縁抵抗 !	けた低下温度 (°C)	110	110	
in.	誘電正接	定格電圧・20°C	0.4	0.26	
性	(%)	定格電圧 · 65"C	0.75	0.90	
	箱板組織	温度とう配(°C)	10	11	
	過電流 600	%許容時間 60°C (秒)	粉?	約9	

5. 接続部絶縁

コイル 相互間、極間および ケーブル との接続部の絶縁は、 最も高度 な技術を必要とする個所で、これらは過去においてつちかわれた当 社独特の接続技術が十二分に発揮されている。

5.1 コイル相互間

コイル 相互間の接続については当初 コイル ごとに接続し、耐水絶縁 処理を行なっていたが、その後画期的な工作法を見出し毎極毎和の コイル を連続した状態で コイル と接続部を同時に加熱融着し、連続的 に一体化した絶縁層を形成させ接続個所を極力少なくするととで、 より一層の信頼性を高めている。

5.2 コイル極間

コイル 極間の接続部は、基本的にはコイルと同様な絶縁構成であり

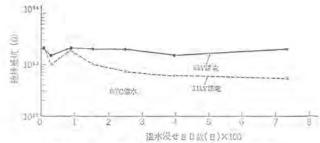
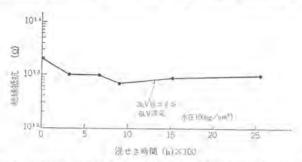



図 5. 接続部モデルの絶縁抵抗特性 Insulation resistance characteristics of prototype connecting part.

Insulation resistance characteristics of prototype coil connected cable under high pressure,

5.3 コイルリードとケーブルの接続

コイルリードと ケーブル の接続にあたってはまず ケーブル の端末を入念 に処理を行ない、ケーブル での トラブル がないようにしなければならない。コイルリードと ケーブル の接続部はコイル 間接続と同じ方法で耐水絶縁処理し、さらに特殊合成ゴムでモールドするととにより、二重耐水 絶縁機造になっている。

5.4 ケーブルの中間接続

高圧水中モートル に付属するケーブルの有効長は設置場所の関係から、その寸法は数十から数百メートルとまちまちである。ケーブル はなるべく一体化した状態で電源に接続されることが望ましいが、ただいたずらに長いケーブルを取り付けておくことは製造工程からポンプ据え付けに至るまでの取り扱いを困難にし、ケーブル損傷の可能性も出てくる。そこで当社では、標準的な有効寸法で工場出荷し、ユーザの要求に応じてポンプ据え付け現地にてケーブルの中間接続を行なっている。接続個所の設置される場所としては、

- (1) 屋内またはこれに準ずる場所
- (2) 冠水の可能性のある場所
- (3) 完全に水中に浸漬される場合

等があるが、すべての場所に対応できるよう二重耐水絶縁構造とし 万全を期している。

6. 高圧水中モートル用ケーブル

高圧水中 モートルの ケーブル の選定にあたっては、一般地上 ケーブル に要求される特性のほかに次のことが重要である。

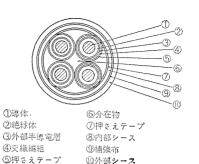


図 7. ケーブル 構造断面図(3,000 V) Cross sectional drawing of cable.

- (1) 直接浸水された 状態で使用されるため浸 水課電による絶縁性能の 低下がなく,耐水性に優 れていること。
- (2) 特に シース は, 強固な構造で機械的強度 に優れていること。
- (3) コイルリードと接続しやすい構造であること。
 - (4) 可とう性が有り,

取り扱いが容易であること。

当社では,長期にわたる寿命試験を実施し図 7. に示すような構造の $4 \cdot \hat{n} + \hat{$

7. 実用機の信頼性

絶縁の寿命評価を行なう場合において、単に寿命試験のみで見き わめることは不可能であり、寿命試験に基づいた寿命推定を基礎と して機器が製作されるわけである。従って総合的に信頼性の評価を 行なうのは、実用機における運転実績であり、これらを基にして標

表 2. 定 期 分 解 点 検 結 果 Result of periodic inspection and disassembly.

田 カ	極数	AL LE		定期点検	Ш	荷時	定期	分解点	検 時
(kW)	(P)		納入年月	年 月		メグ DC 王1,000 V (MΩ)		メグ DC 1,000 V (MΩ)	ステータ 外 観
150	4	3,300	40- 4	42- 2	ОК	2,000<	ок	2,000<	異常なし
75	4	3,300	40- 4	42- 2	ОК	2,000<	ОК	2,000<	異常なし
160	6	2 200		42-11	ОК	2,000<	ОК	2,000 <	異常なし
100	0	3,300	41-11	48- 3	ок	2,000<	OK	2,000<	異常なし
160	6	3,300	42- 2	43-12	ОК	2,000<	ОК	2,000 <	異常なし
100	100 6 3,300	42~ 2	48- 6	ОК	2,000<	ОК	2,000<	異常なし	
220	4	6,600	44- 3	46- 3	ОК	2,000<	ОК	2,000<	異常なし

準工作法で製作された物の寿命を推定することになる。当社は 1965年に1号機を納入して以来,多数の実用機を納入してきたが現在まで全く無事故で運転されている。このことは,高圧水中モートルの寿命が地上で運転される高圧モートルと同様の安定性と信頼性を持っていることを実証している。 表 2. に定期分解点検記録の一部を示す。出荷時と比較してステータの外観,耐電圧,メグの低下など全く異常がなかった。

8. 納入実績

昭和44年以降の当社の高圧水中 モートル の納入実績を **表 3.** に 示す。

9. む す び

以上,三菱高圧水中モートルの絶縁の概要と,その特性について述べた。高圧水中モートルの開発は,水中モートルの歴史における最大のトピックであり,この成功が大形設備への水中ポンプ利用の道を開いたものといっても過言ではない。すでに,当社の高圧水中モートルは3kV級で約8年,6kV級で約4年の運転実績を持っており,なお安定運転を続行している。この実績が高く評価され,水中ポンプで計画される水関係設備が増加しつつあることは誠に喜ばしいと言わねばならない。

当社高圧水中 コイル の特長は、完全な ボイドレス 絶縁であり、 定格 電圧において、コロナ の発生がないことである。 さらに、 加うるに コイル 間、コイルと ケーブル との接続技術も、きわめて信頼性の高いものである。しかし、その反面、高圧水中 コイル の製作には、 きわめて、ち密で卓越した絶縁技術が要求されるため、 若干、 生産性をそこなうことになる。 今後、このすぐれた特性を損なうことなく生産性を向上し、安定した安価な高圧水中 モートル を製作するよう努力を払ってゆきたい。

当社高圧水中 モートルの優秀性が、さらに各界に理解され、あらゆる水関係設備に利用されることを念じてやまないものである。

表 3. 三 菱 高 圧 水 中 モートル 納 入 実 績 User's list of Mitsubishi high tension submersible motors.

納	λ	先	納入年月	台	縠	形	式	出 kW	極数	電火	周 波 数 Hz	6/0	考
三菱レー	ョン (KK) 豊橋工	場	44-8	1	1	水封式	(軸下)	240	6	3,300	60		
三菱レー	ョン (KK) 豊橋工	.場	44- 8	1		水封式	(軸下)	150	4	3,300	60		
三変レー	ョン (KK) 豊橋工	:場	44- 8	1		水封式	(軸下)	100	4	3,300	60		
東洋紡績	(KK) 岩国工場		45→ 2	2		水封式	(軸下)	320	6	3,150	60		
鹿 児 よ	b 水 道 局		45- 3	1		水封式	(軸下)	220	4	3,300	60		
岐 阜 7	市 水 道 部		45~ 5	1		满水式	(軸下)	220	4	6,600	60		
大昭和製料	氏(KK) 経由アル	ゼンチン向	45- 7	5		水封式	(軸下)	230	4	3,000	50	ベローズ	与藏式
名古屋駅前	自地下駐車場		45- 8	2		水封式	(軸上)	60	2	3,300	60	深井戸用	
小平市	市 水 道 部		45- 9	2		水封式	(軸下)	75	4	3,000	50	ベローズ	
三重取り	混 企 薬 庁		45-11	2		水封式	(軸上)	170	6	3,300	60	保護装置化	<u>寸</u>
吳 市	水 道 局		45-12	1		水封式	(軸下)	85	4	3,300	60		
三菱レー	ョン (KK) 豊橋工	- 場	46- 2	1		水封式	(軸下)	240	6	3,300	60		
日 産	化 学		46- 4	1			(軸上)	75	2	3,150	60	深井戸用	
岐 阜 ī	市 水 道 部		46-11	1		湖水式	(軸下)	200	4	6,600	60		
東京都區	5 村 静 水 捌		46-12	i		水封式	(軸下)	75	6	3,000	50		
具 市	水 道 局		47- 2	1		水封式	(軸下)	85	4	3,300	60		
岡山山	県 企 築 庁		47~ 3	1		水封式	(軸下)	120	10	3,300	60		
吳 市	水 道 局		47- 7	1		水封式	(軸下)	85	4	3,300	60		
岐 阜 i	市 水 道 部		47- 8	1		満水式	(軸下)	220	4	6,600	60		
军石:	土 地 改 良		48- 5	1		水封式	(韓上)	440	4	3,000	50		
徳島ī	市 水 逍 局		48- 8	2		水封式	(軸下)	80	6	3,300	60		
徳 島 7	市 水 道 局	***************************************	48- 9	2		水封式	(軸下)	150	8	3,300	60	l	
宫崎市	市 水 道 局		48-10	3		水封式	(軸下)	275	4	3,300	60		
埼玉り	県 水 道 局		48-11	3		水封式	(軸上)	90	4	3,000	50	深井戸用	
沼津市	泉水源地		48-12	2		木封式	(軸下)	450	4	3,000	50		
岐 阜 i	市 水 道 部		49-1	1		滴水式	(翰下)	220	4	6,600	60		
餃 阜 1	市 水 道 部		49- 1	1		尚水式	(軸下)	200	4	6,600	60		
国鉄(第	関門トンネル)		49- 2	6		水封式	(軸上)	150	4	3,000	60	タービン	
天 満	製紙		製作中	1		水封式	(軸上)	100	2	3,000	50	深井戸用	
笠岡 1	市 浄 水 場		製作中	1		木封式	(軸下)	135	4	3,300	60		
日本	網管		製作中	3	1	水封式	(軸下)	300	4	3,300	60		
関東	地 建		製作中	5	,	水封式	(軸下)	130	14	3.000	50		

訂 正

Vol. 48・No. 2, 表題『鉄鋼 ブラントへの シーケンサ MELSEC-310 の適用』 図 6. (193 ページ), 図 7. (194 ページ) は不鮮明でしたので、下図の通り訂正いたします。

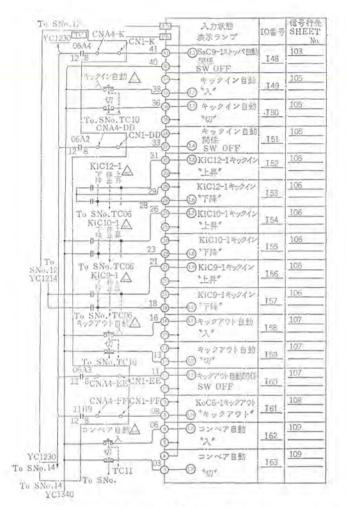


図 6. MELSEC 入力回路 MELSEC input cirucuit.

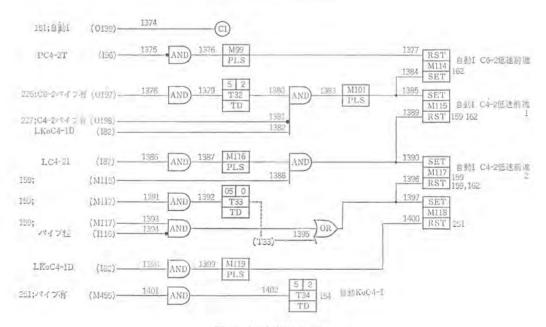
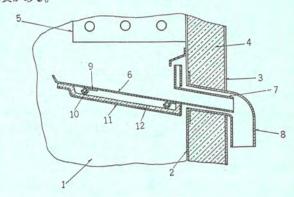


図 7. MELSEC プログラム MELSEC program.

特許と新案

除霜 装 置 (実用新案第 937508 号)


> 考案者 山 本 喬 夫・作 野

この老案は除霜装置、特に冷凍ショーケース冷凍庫などに装着され るヒータ式、あるいはホットガス自動除霜装置に関するものである。

図はこの考案を示すもので、ドレンパン(6)の表面に ヒータ 押え(9) により ヒータ(10) を接触させ、ドレンパン(6) とドレンカバー(11) との間 に耐熱性のしゃ(漁)熱板(12)をはさんであり、このしゃ熱板(12)の ため ヒータ(10) の熱の ほとんどは ドレンパン(6) の温度上昇に 貢献す る。 また除霜中は ドレンパン(6) および ドレンパイプ(7) の温度は、庫 内(1)の温度が限界を越えない限りにおいてできるだけ上げること が望ましいため、ドレンパン全体は内箱(2)から離してあり、冷却器 (5) からの水がすき間を流れないように露受けを設けている。ま た ドレンパイラ(7) は外箱(3)の 外部まで出した 排水管(8)の中を通 して常に外気と接触させ、除霜中の温度が上昇し、排水が途中で凍 結しないようにしてある。

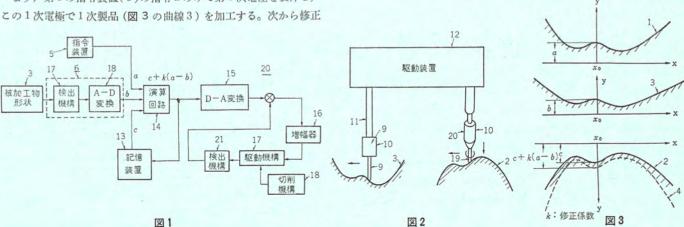
以上のごとくこの考案によると、 ドレンパン(6) の温度上昇が確実

のため、 凍結の恐れは全くなくなり、 しかも ドレンパイプを庫外付近 まで導出させ、常に外気と接触するようにしたことにより ヒータ容 量を小さくし、ひいては価格低減および電気代節約ができるという 特長がある。

通雷加工用電極の修正装置 (特許第634916号)

この発明は放電加工用電極の修正装置に関し、従来のように所望 製品形状とためし加工による製品の形状との寸法差を実測しながら、 手作業で電極修正する必要をなくし、従来不可能と考えられていた 複雑な形状の電極の修正をも可能としたものである。

すなわち、この発明は図 1. の構成を有し、同図中 駆動機構(17) は図 2. の駆動装置内に組み込まれている。

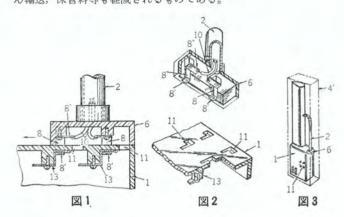

以下電極修正動作について述べる。

まず,第1の指令装置(5)の指令aのみで第1次電極を製作し,

動作に入り、 所望製品形状(図3の曲線1) との相違を検知し修 正信号を演算装置(14)が発生する。この信号により修正した2次電 極を作り、次いで2次製品を加工する。2度目の修正は2次電極を 1度目の修正動作の1次電極とみなし、2次製品をその1次製品と みなして上述と同じ修正動作を行なわせ, n次製品の形状寸法が所 望製品形状の寸法公差内になれば、修正を完了するものである。

発 明 者

斉藤 長 男·小 林 和 彦


スタンド支柱取付装置 (実用新案第951812号)

考案者 保田智行・松沢久行

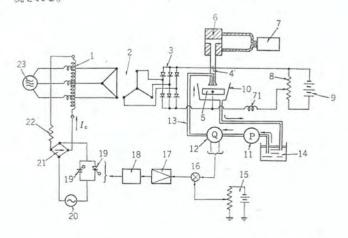
この考案は、スタンド 支柱と、この支柱を保持する基台とを機械的にかつ電気的に分離可能にしたもので、器具(スタンド)をコンパクトに包装できるようにしたものである。

図を参照して説明すると、図1. はこの考案の要部断面図、図2. はその分離状態の斜視断面図、図3. は包装状態を示す図である。(2)はスタンド支柱、(6)はこの支柱の基部に固着した支持台、(8)はこの支持台の下部に電気的に絶縁して固着され、先端にL字状の引掛部(8')を形成した複数の導電性取付部材で、その取付基部(8")にはランプのリード線(10)が接続されている。(1)は上記支持台(6)ひいてはスタンド支柱(2)を保持する基台、(11)はこの基台の上面における上記導電性取付部材(8)と対応する位置に形成したL字状のはめさし(篏挿)穴、(13)は上記基台(1)内に電気的に絶縁して固着した複数の端子部材である。そして上記取付部材(8)の引掛部(8')を基台(1)のはめさし穴(11)にそう入し、図1. の矢印方向にスライドさせることにより、基台(1)の端子部材(13)に電気的かつ機械的に結合させて、上記支持台(6)を基台(1)上に保持するよう構成されている。

この考案のスタンド支柱取付装置は以上のように構成されており、 支持台(6)を含む支柱(2)を基台(1)に対し、きわめて簡単に取付け、取りはずしすることができ、輸送のため包装するときにも図3. に示すように、基台(1)と支柱(2)とを分離し、最も合理的な配置にした状態でコンパクトに包装できる。したがって、包装費はもちろん輸送、保管料等も軽減されるものである。

雷解加工装置(特許第634918号)

発明者 古池一成・久慈陽一・荒井伸治


この発明は定電流特性の電源を備えた電解加工装置に関し、加工 電流を自動的に制御して、電極と被加工物との間げき(隙)に流れる 電解液流量をほぼ一定に保つことにより、上記間げきをほぼ一定に 保つようにしたものである。

一般に、上記間げきは加工電圧、加工電流密度を一定にしておいても電解液の比抵抗が変化すれば、それに応じて変化し、その結果加工精度が変動する。そこで加工間げきの変化を、そこを流れる電解液の流量変化として検出し、電解液流量が常に一定になるように加工電圧、加工電流密度を調整するものである。

図面を参照しながら本発明を略説する。

比較器(16)で流量計(12)からの流量に比例した電圧と回路(15)からの基準流量を与える電圧とを比較し、その差に応じた出力で、サイリスタ(19)の点弧 パルス の位相を進めたり遅らせたりする。 そして可飽和 リアクトル(1)の制御回路電流 I_0 を増加したり 減少したりさせる。さて、比抵抗 ρ が小さくなると一定電流が流れて加工電圧を一定に保つためには、加工電圧=(比抵抗)×(電流密度)×(間げき)が成立しなければならない。 サーボコイル(71) により サーボ 弁(7)が動

作し、油圧 シリンダ(6) 内の油圧が変化して、電極が上方移動し間げきが広がる。間げきが広がると供給液圧一定下で電解液流量が増加し、上記流量計(12)でその増加を検出する。以下上述したとおりの動作を行なうものであり、本発明によりきわめて高精度な加工が実現される。

原子カプラント用電気機器の耐震試験

八島英之*

Seismic Test of Electric Equipment for Nuclear Power Stations

Head Office Hideyuki Yashima

In nuclear power stations resistivity against earthquake is severely called for on electric equipment related to safety shutdown of the plant operation and to the prevention of releasing radioactive materials. To demonstrate the seismic capability of the equipment, vibrational tests have been conducted on some typical control boards, switchgears and their components such as relays. As a result, it has been qualified that these items have sufficient assismic performance both mechanically and functionally when subjected to the test even in severer seismatic environment conditions with the present nuclear power plants.

1. まえがき

よく知られているように、原子力 プラント は在来の プラント に比べて、格段の安全性確保の配慮がなされており、その一環として、発電所内の必要な施設や機器に対して、きびしい耐震設計が要求されている。その目的とするところは、原子力発電所が大きな地震に遭遇した場合でも付近の公衆または従業員に放射線障害を及ぼさないようにすることにある。

そのために、施設や機器が プラント の安全性に関与する程度に応じて、適切な強度をもち、機能を保持するよう、耐震重要度分類がなされ、 それぞれの クラス で定められた要求事項を満足するように設計されることが必要になってくる。原子力 プラント の施設や機器は耐震上、次のように分類されている。

 A_{252} その機能喪失が原子炉事故をひき起こすおそれのあるもの、および、原子炉事故の際に放射線障害から公衆を守るために必要なものがこれに属する。 A_{252} のうちでも特に安全上重要なもの、すなわち、原子炉格納容器、原子炉停止装置は通常 As_{252} に分類される。

 B_{252} 高放射性物質に関連するもので、 A_{252} 以外のもの。

Cクラス— A および B クラス以外で通常の耐震性を要するもの。 ここで耐震上考慮されなければならない 電気機器は現在 A クラス に分類されている。 従って,A クラス として要求される条件,性能 を満たさなければならない。それでは,どのような地震のもとでこ れらの機器はその機械的強度,電気的機能を維持しなければならな いか。その基準となる地震として次の二つの段階の地震が規定され ている。

(a) 設計地震

特定の敷地で予想される最強の地震であり、その強さは、敷地付近で入手し得る地震歴、地盤条件を参考にして決定される。A252に属する施設の耐震性の認定(Qualification)はこの設計地震にもとづいて行なわれる。

(b) 安全余裕検討用地震

As 252 に属する施設に対しては、一般に上記設計地震の 1.5 倍の強さの地震をもって、安全上の余裕の検討が行なわれる。 これが安全余裕検討用地震である。

原子力 プラントにおいて安全と特に重要な機器は、これらの地震環境下で十分耐震性を有することをなんらかの方法で確認する必要がある。その方法としては、理論的に解析による場合もあり、また実験によって証明する場合もある。ここで取扱っている電気機器、例えば制御盤や開閉装置は複雑な構造をもっており、かつ、種々の計測器や制御器のような機能要素をもっているので、解析だけでその特性を完全に求めることは困難である。むしろ、これらの機器を加振台にのせて振動試験を行なうのが実際的と考えられる。われわれは、原子力プラントに設置されるクラス A の電気機器に対し、実際の地震をシミュレートした外力を加えたとき、それらが構造的にも、機能的にも十分な耐震性を有することを実証するため、ここに一連の耐震試験を行なった。

2. 耐震試験の方法

2.1 床応答曲線(床応答スペクトル)

耐震試験の方法について述べる前に、その基礎にある応答曲線、 (応答 スペクトル――Response Spectra) の考え方についてまず説明しておこう。

今,問題としている表面——地盤応答曲線の場合には地盤、床応答曲線の場合には建物の床に、1自由度の振動系を固くとりつける。これらの系はそれぞれ固有振動数と減衰定数(臨界減衰定数の%で表わされる)をもっている。これらの表面が地震動を受けたとき、各振動系の最大応答をプロットしたものが応答曲線(応答スペクトル)であり、地盤の場合、床の場合に応じてそれぞれ地盤応答曲線、床応答曲線となる。図1. は床応答曲線の一例である。これら応答曲線はプラントの敷地、そこで想定される地震動、建物の構造によって異なってくるものである。(ここで注意しなければならないことは、床応答曲線は床にとりつけられた振動系の最大応答をプロットしたもので、床自体の振動スペクトルではないことである)最大の床加速度は床応答曲線の高振動数域の加速度値から読みとることができる。この値は機器の耐震試験の際の入力値として重要な意味をもっている。(後述)

2.2 試験の概要

原子力 プラント 用電気機器の耐震試験の対象になったものは、制御盤や開閉装置のような機器 (集合機器—Assembly—) が主であったが、同時に、これらの機器にとりつける継電器やしゃ断器のような

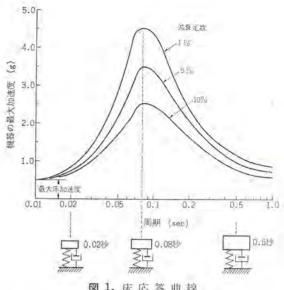


図 1. 床応答曲線 Floor response curves.

器具単体についても振動試験を実施した。この両者の試験結果を照合することにより、原子力用電気機器の機構的特性と電気的機能の間の結びつきが明確になり、耐震性能の確証に有力な手がかりを与えることになるものである。

試験のやり方は集合機器と器具単体の場合で若干異なっている。 前者については、実際の地震波をシミュレートした振動入力――正弦 ピート波を加え、機器の機械的強度が十分であるか、機能が確実に 維持されるかをしらべる。特に機器として最も過酷な影響を受ける と考えられる共振点付近の挙動については十分に確認をすることに した。これに対して、器具単体の場合は正弦波振動を加え、加振入 力を大きくしていったときの誤動作の生ずる限界値を求めることを 主目的とした。これらの器具を集合機器にとりつけた場合の一般的 な耐震特性を知るには、器具の動作の周波数特性をは(把)握してお くことが必要である。

2.3 正弦ビート波

耐震試験において、まず考慮すべきことは次の二つの要件である。 (a) いかなる波形で加振するか。

(b) いかなる強さの振動を加えるか。

ことではまず、上の(a) について検討しよう。

耐震試験で使われる加振波形としては、実際の地震波を使う時刻 歴法 (Time History) とか、連続正弦波とか、あるいは地震波を模 擬した各種の波形が提案されているが、ここでは模擬波の一種とし ての正弦 ビート波 (Sine Beat Vibration) を採用した。

一般に建物や構造物の基礎に加わる地震波は図 2.(a)に示すように、振幅、振動数ともに変動する多くの波を含む不規則波である。しかし、これが建物というフィルタにかけられると、建物の固有振動成分が残り、他の成分は無視し得るようになる。すなわち、図 2.(b)に示すように、建物の固有振動数成分をもち、振幅は変動する不規則正弦波となり、その包絡線は ビート 波状を呈している。 さらに、その建物に据付けられた機器の応答を示したものが図 2.(c)である。機器の固有振動数が、建物の固有振動数と一致している場合、機器として最も過酷な条件で振動することになる。

自然の地震から生じた図 2. (h) のような床の振動は、不規則正 弦波とよばれる。これと同等な効果をもつ類似の振動で、試験装置 のために標準化された波形が図 3. に示される正弦ビート波である。

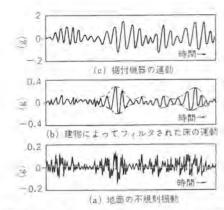


図 2. 地震動と健物,機器の振動波形 Seismic motion and waveforms of building and machines.

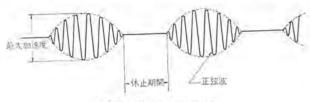


図 3. 正 弦 E - F 波 Sine beat wave.

われわれの試験では、 $\Gamma \stackrel{\cdot}{\vdash} - \Gamma \stackrel{\cdot}{\to} \stackrel{\cdot}{\to} 10$ 波の正弦波 (搬送波)を含み、 $\stackrel{\cdot}{\vdash} - \Gamma \stackrel{\cdot}{\to} \Gamma$

2. 4 加振加速度

加振波形がきまれば、次は、どれだけの大きさで加振するか、すなわち、ビート中の正弦波の最大振動加速度をいくらに選ぶかをきめなければならない。これには、その機器が据付けられている床に加わる最大加速度を与えればよい。この値は前に述べたように、図1.の床応答曲線において、最高振動数の点の加速度値を採ればよいわけである。ただし、この床応答曲線は、特定の地点の、特定の建物の床に対するものであるから、立地点や建物が変われば最大床加速度も変わってくるはずである。従って、この試験を一般的なものにするためには、想定されるプラントの最大床加速度を上回るものでなければならない。

2.5 機器の耐震試験

試験は二つの段階にわかれる。すなわち,

- (a) 掃引試験
- (b) 耐震強度試験

(a)の段階では、低い振動加速度値(0.1~0.2g)の連続正弦波で加振し、その周波数を連続的に変化させて機器の固有振動数を求める。それは機器の各部に取付けられた振動検出器の出力の記録から判定される。制御盤のように複雑な機器では、場所によって共振周波数が異なって出ることがあるが、これは各点を比較し、機器全体として著しく現われるものを以て主要な共振とみなすことにしている。

(b)の段階では、このようにして固有振動数が求められると、それと同じ周波数の正弦ビート波で加振し、機器の強度、機能の試験を行なう。加振の条件としては共振周波数における加振が最も過酷であるが、その他の周波数における挙動も知っておく必要がある。

その周波数のえらび方は等間隔、あるいは等比級数的にとり、耐震上問題とする周波数範囲(例えば5ないし30Hz)の振動特性全体がは握できるようにすることが必要である。実際上は各周波数における加振入力と振動検出器の出力の比――応答倍率を求めておけば、その機器の地震時の挙動を知ることができる。

2.6 器具単体の試験

継電器やしゃ断器のような器具の振動試験も次の2段階にわかれる。

(a) 共振周波数の測定

機器と同様に、小さい振動加速度の正弦波で掃引加振し、器具の 共振周波数を求める。これによって、器具の部品の共振現象が見出 されることがある。

(b) 誤動作限界加速度の測定

器具の場合は、ある周波数(連続正弦波)を固定し、加振加速度をあげてゆき、ある加速度以上で誤動作を生じたとき、その値を誤動作限界加速度とよぶことにする。これを各周波数について測定しておけば、器具の動作の周波数特性が得られる。誤動作の形としては、継電器のような場合には接点のおど(既)りとか、開離があり、また、アナログ出力要素の場合には出力の規定値以上の大幅な変動がある。

3. 試験装置

大形機器の試験には、当社伊丹製作所に設置されている大形加振台を使用した。 これはあらかじめ磁気 デープ に記録された、あるいは電子回路で発生させた入力信号を電油 サーボ 装置を介して増幅し、加振台を駆動するものである。この装置の仕様は

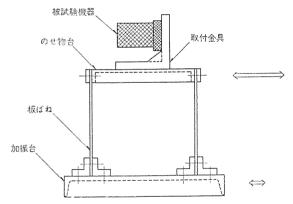


図 4. 加 振 増 幅 装 置 Vibration amplifying device.

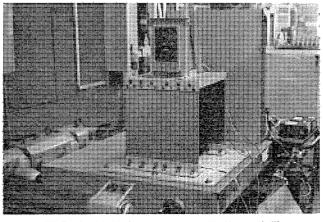


図 5. 加 振 増 幅 器 に よ る 器 具 の 試 験 Test on machines by means of vibration amplifying device.

加振力………17 t•g

最大積載重量……..7 t

加振台の大きさ……4 m×4 m

最大振幅………±75 mm 最大加速度………2.4 g (15 Hz において)

器具や小形機器は、小形の カム 式加振機、あるいは動電形加振機を使用した。しかし一般の加振機では1 ないし10 Hz のような低周波領域では、大きな加速度値が得られない。周波数が低くなればなるほど、一定の加速度を得るには、大きな変位が必要になるためである。そのため、小形機器に対しては、低周波領域で大きな加振力を与えるために、図 4. に示すような加振増幅装置を使用した。 これは板ばねと質量(被試験機器と載物台の質量の和)によってきまる固有振動数をもっており、この振動数で加振台を動かせば共振を生じてきわめて大きな振動加速度を被試験機器に与えることができる。実験によれば5 Hz で 10 g (全振幅 200 mm) の加速度が得られた。周波数を変化させる場合には、あらかじめ用意された常数の異なる板ばねに交換すればよい。

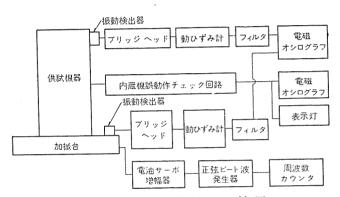
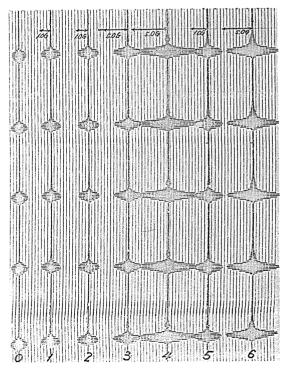



図 6. 振動計測計ブロック線図 Block diagram of vibration meter measurement.

0:加振入力 1~6:機器各部の振動

図 7. 正弦 ビート 波加振による機器各部の応答 Response on various parts of machine with sine beat wave application.

加振台へ供試機器を乗せ、その振動特性や動作機能を測定するための計測系のブロック線図を図 6. に示す。振動測定には加振台と機器の各部に振動検出器を取付け、その出力を おシログラフ で記録させる。また、機器取付の継電器やしゃ断器のような機能要素の動作を監視するために、その出力を別の おシログラフ に入れて記録をとる。また、維電器の接点の動作は自己保持回路と ランプ で表示することもできる。このほかに、被試験機器の加振中の動作、機能をしらべるため、操作回路、電源等も接続されている。

図7. は正弦ピート波で加振したときの各部の振動を測定した記録の一例である。

4. 試験結果の要約

てて耐震試験の対象とした電気機器は、原子力 ブラントの工学的 安全施設に関連し、その系に電力を供給し、また、それらを操作、 制御するための電気系設備である。その中には制御盤、計装盤、開 閉装置、電源設備等が含まれている。ここで試験を実施した機器と その結果の要約を表 1. に示す。

これらの機器に対する加振入力はいずれも 実際 の プラット で 設置 される場所の最大床加速度を大きく上回る値をとっている。例えば、ある原子力発電所で、リレー 盤が設置される場所の最大床加速度は、0.436gであるのに対し、試験では 1.0g以上の値で加速度値で加振した。他の機器に対しても同様に、十分の安全余裕を見込んだ条件で試験を実施してあるので、この試験の結果は実際に想定される地震の条件に対し、十分の耐震性を保証しているものと考えてよいであろう。

表 1. 機 器 の 耐 震 試 験 の 結 果 の 要 約 Summary of results of quakeproof tests on apparatus.

69 93	固有提	動数 Hz	13 85 66 m	No32		
機器	前後	左右	試 數 結 果	伽 考		
空 間 盤	15	35	機械的損傷は認められず 機能保持に異常は認められ ず			
一次系リレー盤	21	40 以上	機械的記傷は認められず 1g 以上の前後方向加援で 一部リレーの接点の問題を 生ず	プラント内設置 樹床が速度の 例 0.436 g		
無停電電源装置	8, 11	12~13	機械的損傷は認められず 運転状態,機能保持に異常 は認められず			
ディーゼル発電 機制餌盤	23	5, 13, 20	機械的損傷は認められず 加振中の動作,機能保持に 異常は認められず			
6.6 kV スイッ チギヤ	9~10	8~10	機械的損傷は認められず 加援中の動作,機能保持に 異常は認められず			
440 V スイッチ ギヤ	7, 15	7	機械的損傷は認められず 加援中の動作,機能保持に 異常は認められず			
コントロールセンタ	9	A	機械的損傷は認められず 1.0g 以上の前後方向の加 概で一部のリレーの接点の 開聯を生ず	プラント内設置 場所の床加速度 の1例 0.413g		

5. 各機器の耐震試験

5.1 空調盤

空調盤は工学的安全防護施設を含む所内換気装置を制御するためのものである。空調盤に対しては、まず解析に基づいて耐震構造設計を行ない、その設計によって作られた盤の耐震試験を実施し、両者の結果を照合する。とれによって、解析法の妥当性を確認すると同時に、中央側御盤等の耐震設計のモデルとした。

空調盤には、保護継電器、補助継電器、計測器、変換器、スイッチ等が取付けられ、加振時におけるそれらの振舞も調べられた。供試盤は高さ2,800、幅3,000、奥行1,500 mmの自立閉鎖形盤で、骨組構造に側板および天井部を鋼板張りにしたもので、全部溶接構造になっている。内部の骨組は剛性を高めるために斜めはり(梁)を入れてトラス状に組んである。

図 8. は加振台で試験中の空調盤の外観を示し、図 9. はとの試験で測定された振動数対応答倍率の関係を示したものである。この試験の結果は、機械的にも、機能的にもなんら異常は認められなかった。

この空調盤は骨組板張構造であるが、解析を行なう場合、図 10. のように、質点を質量のないはりでつないだモデルを考える。 その場合 パネル は図 11. のように、わく(枠)と斜めはりに置換して剛性を評価する。 このモデル について解析を行ない、得られた前後および左右方向の固有振動を実験の結果と対比させたものが 表 2. である。この両者はかなりよく一致しており、さらに前後方向でははりの剛性が支配的であり、左右方向ではパネルのせん(剪) 断剛性を考

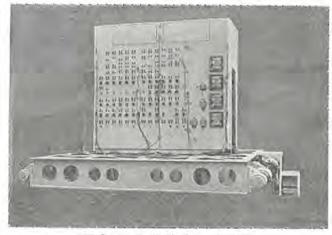


図 8. 振動試験中の空調盤 Air conditioner under vibration test.

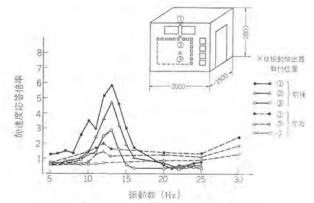


図 9. 空調 盤の振動特性 Vibration characteristics of air conditioner panel.

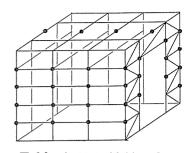


図 10. 空調盤解析モデル Analytical model of air conditioner panel.

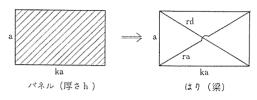


図 11. パネルからはり(梁)への変換 Change from panel to beam.

表 2. 空調 盤の 固 有 振 動 数 Characteristic frequency of air conditioner panel.

振動方向		実 験 Hz	fili	計	П Нz	値	dia	岩
ňú	後	13~1	4		13.9		パネル国	性を無視
左	右	30~3	5		28.6			性を考慮

慮しなければならないことがわかる。

つぎに 図 12. は前後および左右の共振時の各部の応答倍率を実験および解析によって求めたものである。解析では盤の滅衰定数を1,3,5%にとってプロットしてあるが、実験値は解析値よりも応答倍率が低くなっている。これは盤全体の滅衰定数は5%以上であることを意味する。このことはビート波加振時の応答曲線の滅衰の割合からも裏づけられる。従って制御盤の類では、共振時の応答倍率はあまり高くならず、内蔵する継電器のような機能素子の誤動作を生じにくくするので、盤の機能面からみた耐震性能には有利に寄与することになる。

5.2 一次系リレー盤

原子炉一次系 リレー 盤には工学的安全防護施設用,原子炉保護系用 リレー 盤,および各種補助 リレー 盤等が含まれる。この リレー 盤は骨組構造を使用せず,侧板を一体化した モノコック 構造を採用しており,中央の仕切板に制御 リレー,補助 リレーが取付けられている。この他にタイマ,スイッチ等も取付けられ,その耐震特性も調べられた。ここで使用した リレー は新たに開発された耐震性の高い SR-G 形である。

図 13. はこの盤の振動数対応答倍率を示す。この図からわかるようにその固有振動数は前後方向で 21 Hz, 左右方向で 40 Hz であった。このようにパネル 構造は剛性が非常に高いことがわかる。 また, 前後方向の共振点で盤の最上部の加速度応答倍率は 10 以下であり, これから減衰定数は 5 %程度と推定される。共振点において最高 1.5g で加振したときでも, 盤自体は機械的には なんら損傷変形をうけなかった。さらに, 機能面では耐震形継電器を使用することによって,接点の開離を生ずる振動加速度が高くなり, 実際のブラントで想定される最大床加速度をはるかに上回る値で加振しても誤動作は認められなかった。

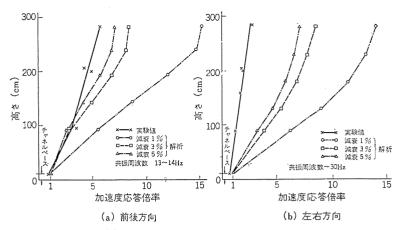


図 12. 盤 面 位 置 と 加 速 度 応 答 倍 率 Panel position and acceleration response multiplying factor.

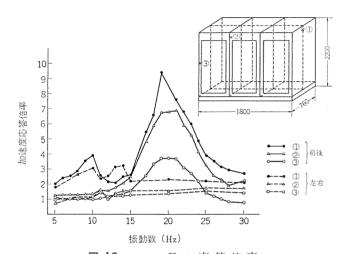


図 13. リレー 盤の 応答 倍率 Response multiplying factor of relay panel.

5.3 無停電電源装置

原子力プラントの計測制御系,原子炉保護系設備に電力を供給する無停電電源装置で,その回路にはサイリスタを使用した静止形方式が用いられ,入力や負荷の変動にかかわらず,安定化された一定周波数,一定電圧の交流を生ずる。供試機器は耐震性をもたせるため,在来の標準機種がボルト締め構造であったのに対し,溶接構造とした。また標準機種は幅750 mmの2面から成っているが,本機器はこれを一体化し剛性を高めてある。装置内部では制御ユニット,部品類は止めねじで固定し,耐震性を増すようにつとめたのは当然である。さらに,機能面では回路を改良し,リレー類の誤動作の影響を排除することができた。

耐震試験によって得られた加速度応答倍率の カーブ を図 14. に示す。試験の結果では機械的損傷,機能の喪失等は全く認められず,加振中の出力電圧の変動等も測定されなかった。これによって,この無停電電源装置は要求される耐震性能を満足することが確認された。

5.4 ディーゼル発電機制御盤

ディーゼル 発電機は外部電源の喪失時に,工学的安全防護施設, または発電所の安全停止に必要な電力を供給することを目的とし, その制御盤はディーゼル 発電機の起動, 停止, 母線へのしゃ断器の投入,しゃ断, および電圧制御を行なう機能を有し, 高度の耐震性が要求される。

この盤は側板および天井を溶接した モノコック 構造になっており,

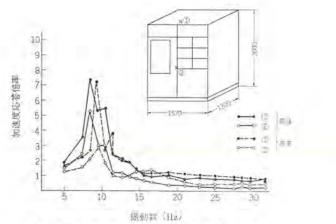


図 14. 無停電電源装置の振動特性 Vibration characteristics of non-stop power supply device.

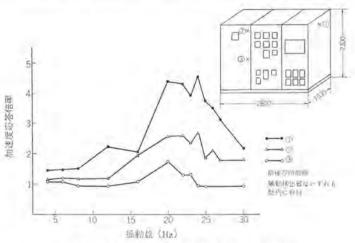


図 15. ディーゼル制 御 盤の 振 動 特 性 Vibration characteristics of diesel control panel.

パネルの内面にも補強材が溶接されている。 供試盤は図 15. に示すように3面の列盤で、これに励磁トランス、AVR、保護リレー、制御リレー、表示器、スイッチ等が取付けられ、これらは制御盤としてのシーケンス 機能が遂行できるように結線されている。 ディーゼル 制御盤に要求される仕様としては、地震によって外部および所内電源回路がトリップ すると、10 秒以内に ディーゼル 発電機を起動し、電圧を確立しなければならないことになっている。すなわち、地震動が継続している間に、制御盤は所定のシーケンス 動作を遂行しなければならない。そのため、加振中にシーケンスが異常なく遂行されるか否かを調べる必要があった。

ディーゼル発電機制御盤の加速度応答倍率を図 15. に示す。 モノコック 構造のため、剛性が高く、固有振動数がかなり高い所に現われているのが注目される。耐震試験の結果、機械的にはなんら損傷、変形を受けていない。機能面では盤に取付けられた器具類の誤動作は認められず、主要なシーケンス動作も加振中、正しく遂行されることがわかり、十分の耐震性をもっていることが証明された。

5.5 6.6 kV スイッチギヤ (メタルクラッド スイッチギヤ)

耐震試験の対象とした メタルクラッド スイッチギヤ は工学的安全施設, または発電所の安全停止に必要な諸装置に対し, 高電圧電力を供給 する開閉装置である。この機器には磁気しゃ断器, 母線, 計器用変 成器, 純電器類を キューピクル に収納したもので, 供試盤は3面列盤 で, 標準機種に対し,必要な部分には補強を施し,特にしゃ断器の 消弧室の支持,しゃ断器引出部の固定法には工夫を施した。

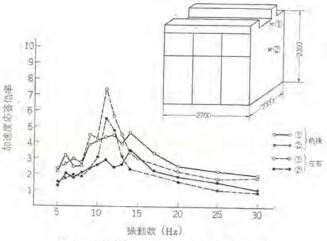


図 16. 6.6 kV スイッチギヤ振動特性 Vibration characteristics of 6.6 kV switchgear.

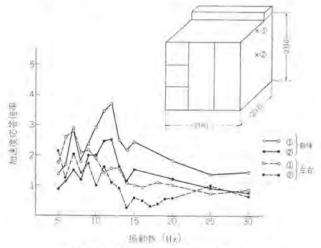


図 17. 440 V スイッチギャ振 動 特性 Vibration characteristics of 440 V switchgear.

試験の結果は図 16. に示す。 規定の加振加速度を与えた結果、 機械的になんら損傷を生ぜず、継電器類の誤動作も認められなかっ た。また、加振中しゃ衡器の動作試験も行なったが、いずれも正常 な開閉動作が確認された。

5.6 440 V スイッチギヤ (パワーセンタ)

パワーセンタ は メタルクラッド スイッチギヤ と同様に工学的安全防護施設または発電所の安全停止に必要な諸装置に対し、低電圧の電力を供給する開閉装置である。供試機器は3面列盤で、機内には気中しゃ断器、母線、各種リレー類が収納されている(図 17.)。標準機器に対し、補強金具の追加、補強フレーム および受電盤内の ユニット 仕切板の溶接、基礎溶接構造の強化等が実施された。

図 17. 仕試験結果の周波数対応答信率で、規定の加振加速度に対し、機械的にはなんら損傷を生ぜず、各素子の誤動作は認められず、また、加振中のしゃ断器の動作も正常であったことは メタルクラッド スィッチギヤ と同様であった。

5.7 コントロールセンタ

コントロール センタ は工学的安全施設, あるいは発電所の安全停止の ための各種補機電動機群 お よ び パルブ・アクチュエータ 等への低電圧電 力を供給することを目的とする。その構造は高さ 2,350, 幅 1,200(2面) または 620(1面)、 奥行 550 の 5ック に引出形の 12ット が収め られている。 12ット には電磁接触器, NFB (1-12-12) しゃ断器)、制御 リレー、制御トランス 等が収められ、 また限流 リアクトル は別盤に

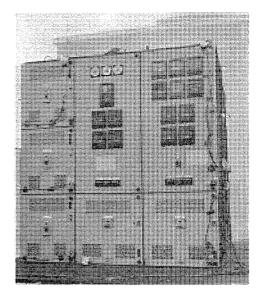


図 18. 耐 霞 試 験 中 の 440 V スイッチギヤ 440 V switchgear under quake-proof test.

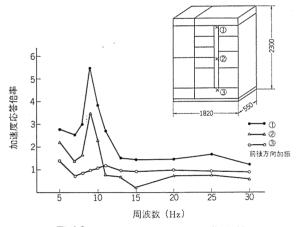


図 19. コットロールセンタ振 動 特 性 Vibration characteristics of control center.

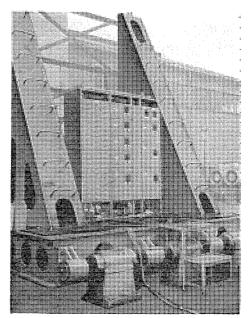


図 20. コントロールセンタと 支持 構造 Control center and support structure.

収納される。標準品は フレーム をねじ止めした構造になっているが, 底面積の割に重心が高いので耐震上特に考慮が必要である。供試盤 では、側方に補強板を溶接して剛性を増し、また ユニット は止め金具 で固定して ガタ を除き、各部に補強金具を溶接する等、構造上の強 度を高めるように設計されている。 このように設計された コントロール センタ 2 面に リアクトル 盤1 面を連結し、3 面列盤と して振動試験を 行なった。

耐震試験の加振加速度値は最大 1.0 g 以上の大きな 値を とった。 この値は実際の原子力発電所で耐震 A クラス の コントロール センタ が設置される最高階の最大床加速度をはるかに上回る値であり,十分に安全が見込まれている。 試験結果は図 19. のとおりで, その応答倍率は比較的小さい値になっている。これは,盤の構造上減衰定数が大きくなっているためと考えられる。 試験の結果では 1.0 g 以上の値の加速度で加振しても機械的には全く破損や変形を生じていない。また,コントロール センタ の制御 リレー も耐震形 リレー を採用しているので,実際の プラントの最大加速度値を大幅に上回る値で加振しても,誤動作を生ぜず,機能面でも耐震性能を有することが実証された。

一般に、この種の盤類は振動を抑制するために、支柱または壁支持方式をとることがある。この方法を模擬するために加振台の上にわくを組み、これから コットロール セッタ の上部に支持はりをとって加振した(図 20.)。 その結果、前後、 左右とも固有振動数が高くなり、かつ振動振幅を抑えるのに有効であることが実証された。

6. 器具単体の試験

制御盤や開閉装置に取付けられるしゃ断器,継電器,スイッチ等の振動試験は 2.6 節に述べたように, 共振周波数の測定と誤動作限界加速度の測定を主体にして行なわれた。加振には連続正弦波を使用したが, 周波数の低い範囲では, 図 4., 5. に示すような加振増幅器を使用して大きな加速度を与えることができる。しかし, 15 Hz 以上では普通の振動試験機を使った。従って, 周波数は連続的に変化できるが,特に15~20 Hz 付近では大きい加速度が得られず限界がある。

振動試験の対象となった代表的な器具とその試験結果は **表 3.** に 要約されている。

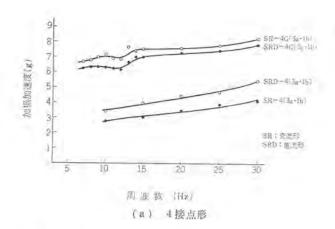
これらの機種のうち、特に電気機器の機能保持に影響がある継電器の振動特性について検討してみよう。

6.1 制御継電器

図 21. は制御継電器の誤動作限界加速度の実測値の一例である。 SR は在来形, SR-G は特に耐震形に設計制作されたものである。 図をみると,機種の相違,接点構成の相違によって特性が異なっているが,いずれも低振動領域で限界加速度が低く,振動数が高くなると限界加速度も高くなる傾向がある。 さらに,在来形の限界加速度が 2~4g であるのに対し,耐震形では5~8g になっており,耐震性能の向上が著しいことが認められる。

それでは、実際の盤の耐震試験で得られた結果と、器具の耐震特性はどのように対応づけられるであろうか。 例を リレー 盤にとると、前後方向の加振で共振点 (19 Hz) において、盤の上部に取付けられた一部の継電器に誤動作が認められた。このとき、盤上部の加速度は8~9g と実測されている。この値は継電器の誤動作限界加速度に見合った値であることがわかる。このことから、盤本体の耐震試験によって各部の振動特性、特に加速度応答倍率を求め、また別途

表 3. 器 具 の 振 動 試 験 結 果 の 要 約 Summary of vibration test results on apparatus.


器具	固有振動数	試驗結果	- 創 考
ノーヒューズ レ ゃ 前 器	5~30 Hz の間に 固有接動は認めら れず	加援方向: X, Y, Z3方向 最高 10g まで加接し異常は 認められず	
1世 磁 揽 鹼 溫	5~30 Hz の間に 固有級動は認めら 化学	加援方向:接触子の運動方向 無助磁状態で無助的接点の開 継が4~5g以上で生ずる。 主接点の開離は10g まで生 ぜず	
M 御 能 電 器 (SR-G 形)	5~30 Hz の間に 間有機動は認めち れず	加援方向:接点の運動方向. 無關磁状態でb接点の開離が 6~8gで生ず	在来機額 (SF 形)は2~4gで 開難を生ずる
タ イ マ (SRT-G形)	5~30 Hz の間に 固有振動は認めら れず	加級方向:接点の運動方向. 無助磁状態で時限 b接点は, 8g以下で誤動作せず、 解時 b接点は 6~8g で開離を生 ず	ニューマチック 形能電器部分は 制御継電器と同じ
你随时就搬	加援方向及び機種 によって相適があ るが、15 Hz 付近 でヘアスプリング が、30 Hz 付近で 動作表示器の共振 が認められるもの があった	加援方向: X, Y, Z 3 方向 機種によって相連があるが。 15 Hz 以下の領域では8g ま で加援し誤動作を生ぜず。15 Hz 以上では加援方向により。 主接点。あるいは ICS 接点 が誤動作を生ずる機種がある	勝導円板形 過電流維電器 過電圧維電器 不足電圧能電器 止率並動業電器
操作スイッチ	5~30 Hz の間に 固有援動数は認め られず	加振方向: X, Y, Z 3 方向 5~30 Hz の範囲で、最高10 g の加速度で加振して誤動作 を生ぜず	押しポタン式, ひねり回し式器 (作スイッチ (OU 形)
制御スイッチ	機種により 30 Hz 付近で共振を生ず るものあり	加援方向:左右,上下方向 5~30 Hz の範囲で最高 10g まで加援,誤動作なし	M形制御スイッチ

に器具単体の誤動作限界加速度を知っておけば、任意の盤や開閉装置の地震時の機能保持性能を予測することが可能であると結論することができる。

6.2 保護継電器

保護継電器の供試品には、制御盤や開閉装置で使用されている誘導円板形の過電流継電器、過電圧継電器、不足電圧継電器、比率差動継電器等の代表的な機種を選んだ。これらはいずれも誘導円板形継電要素と ICS 形表示接触器より構成され、電圧、電流等の被検出量が変われば、円板の回転力が変化し、渦巻ばねの反抗回転力との平衡がやぶれ、接点は閉じまたは開く。表示接触器は継電要素の主接点が動作すると動作表示を出すと共に補助接点が閉じ、主接点の保護と引外し回路を確実に付勢する機能をもっている。

保護継電器の振動特性については JEC-174 において、17.6 Hz、0.21g で機能保持ができることを規定しているが、原子力発電所の耐震条件としては、これよりはるかにきびしいものが要求されている。われわれば、保護継電器の耐震試験でも、固有振動数と誤動作限界加速度の測定を行なった。その際の電気的条件は JEC-174 に準じて与えてある。

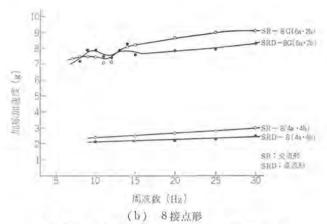


図 21. 制御継電器の誤動作限界加速度 Malfunction limit acceleration of control relay.

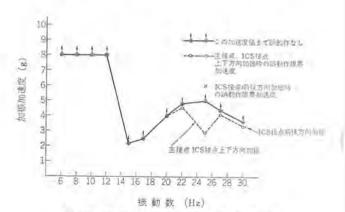


図 22. 過電流継電器の振動特性 Vibration characteristics of over-current relay.

この種の継電器は構造が複雑で、従ってその振動特性も機種によって異なっているのは当然であろう。ことでは振動試験結果の一例として、過電流継電器の振動特性を図 22. に示す。この図をみると15 Hz 以下の低い振動数領域では8g程度の加速度でも誤動作が生じていないが、これは他の機種についてもみられる傾向である。15 Hz 以上になると機種によって異なった振舞を示し、もっと低い加速度で誤動作を生ずるものが出てくる。その原因の一つは、構造によって生ずる部分的な共振が考えられる。 従って、A クラス の盤や開閉装置に、この種の保護継電器を使用する場合には、それぞれの振動特性を十分には握し、それに応じた機器の構造設計、器具の取付け方法を考えなければならない。また、機能面でも、これら器具の誤動作の影響を排除する回路設計をすることがとり上げられな

ければならない。

7. 耐震試験の結果に対する考察

はじめに述べたように、原子力 プラット に設置される主要な A クラス 電気機器の機械的、機能的耐震性を実証することを目的として、各種の振動試験を実施したが、それから得られた結果および問題点について検討してみよう。

- (a) 機器の振動特性を表わす重要な量は,固有振動数と応答倍率である。機器にとって最も過酷な振動条件として,共振点における加振に重点をおいて耐震試験を行ない,機器の各部にかかる加速度値,あるいは加速度応答倍率を求めた。その結果,現在原子力プラントで設定されている地震環境条件をはるかに上回る振動を与えても機械的にはなんら,損傷または変形をうけることはなかった。
- (b) 機器の機能の喪失は、機械的損傷が生ずる振動条件よりかなり下のレベルで生ずる。しかし、供試機器は現在の原子力プラントの設定地震条件に十分の余裕を見込んだ値で加振しても、機能上の誤動作、機能喪失は生じていない。
- (c) とのととから、ととで試験された各種の電気機器は十分に 耐震性を有することが実証されたわけである。
- (d) 別途に継電器やしゃ断器のような器具類単体についても振動試験を行ない、その誤動作限界加速度を求めた。この値と盤類を大きな加速度で加振したとき、器具類の誤動作を生ずる条件(器具取付個所の加速度値)はよい精度で対応づけられるものであることがわかった。これによって、器具単体の振動特性を十分には握しておき、また盤類の振動特性を知っておけば、この両者を照合することにより電気機器の地震時の機能維持性能を予測することができる。
- (e) 機器の減衰定数を実験的に求めることができた。この値は、 現在一般に仮定されている 0.5~1 %に比べてかなり大きく、5 %ぐ らいの値が多いと考えられる。減衰定数は機器の耐震設計に重要な 因子であり、その数量的な検討は今後の大きな課題である。

- (f) 機能的要素器具, 特に リレー 類のように振動によって誤動作を生じやすいものについては, 耐震性の高い機種, あるいは無接点方式の機種の開発が必要であろう。また, これらを使用する場合には, 系全体として機能面の耐震性を確保するよう, 要素器具の誤動作の影響をうけない回路方式, あるいは フェイルセーフ の設計を採用することも考えるべきであろう。
- (g) 現在,原子力 プラント 用電気機器の耐震試験の方法,条件,結果の判定基準等は個々のプラントに応じて,地震環境条件を設定して,試験が行なわれている。 今後,これらの原子力 プラント 用 電気機器の耐震試験法に関する統一的な規格あるいは基準が早急に確立されることが望ましい。

8. む す び

原子力 プラント 用の主要な電気機器について一連の耐震試験を実施したが、従来このような条件のもとで試験した例がなく、種々有用な資料を得ることができた。今後さらに合理的で有効な機器の耐震設計手法を確立するために、この種の試験はつづけることが必要であると考える。

この試験の実施にあたり、関西電力(株)の関係各位には格別のご 援助、ご協力をいただいた。心から感謝の意をささげたい。また、 この耐震試験はこの問題に関係された各方面の熱意と努力によって 遂行されたものである。あわせて謝意を表する次第である。

参考文献

- (1) 電気技術基準調査委員会:原子力発電所 耐震設計技術指針, 電気協会(昭 45)
- (2) Fischer, E. G., Ferguson, W. H., Colaiaco, A. P.: Test Method to Demonstrate the Seismic Capabilities of Equipment, IEEE Transaction Paper, T-72-052-4

リング精紡機用電機品

中沢俊郎*・松本圭二*・金子正雄*

Electric Apparatus for Ring Spinning Machines

Nagoya Works Toshiro Nakazawa • Keiji Matsumoto • Masao Kaneko

In the textile industry, which was once at the top of Japanese industries and still is one of basic enterprises, labor saving has long been desired. Among various divisions in this category, the ring spinning is the one needs the largest number of machines so as to play the vital role in the spinning process and the labor saving is seriously taken into consideration. This article describes electric apparatus used for the ring spinning machines.

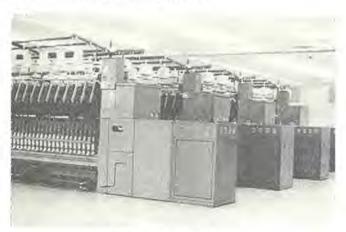
The electric apparatus referred to are connected to the first step toward the unattended operation of the spinning process. They are epochal devices and subjected to severe requirement. Overcoming many hard questions, Mitsubishi has taken up a new control system to meet the requirement. This article introduces the outlines of ring spinning machines and their electric equipment.

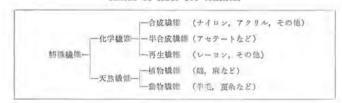
1. まえがき

近年, 化学繊維・天然繊維にかかわらず, 繊維工業において労働 環境の改善とか, 省力化・自動化の要求が強く叫ばれ, 装置の技術 水準の向上はもとより, 電機品の高度化が進みつつあるが, このよ うな情勢のもとで今回, 新形の リング 精紡機の電機品を完成した。

この リッグ 精紡機は、 しの巻から引伸しおよび糸よ(熱) りを行ない、満管糸として巻取るのはもちろん、従来、困難とされていた玉揚げ作業を行なう、オートドッファも装備しているので、自動糸つなぎの機能とあわせて精紡工程の完全無人化への第一歩を踏み出している。

このリング精紡機の電機品を手がけるに当って新しい制御方式を 開発し、装置の小形化と制御性能の向上を達成したので、ことに機 械装置の概要と電機品の内容を紹介する。




図 1. リング 精紡機電機品 Ring spinning machine.

2. 装置の概要

2.1 紡績工程

繊維加工工業は紡績工程といわれ、これは紡績工程と製布工程と に分かれている。(この他にメリヤス工程がある)

表 1. 繊維の種類 Kinds of fiber for textiles.

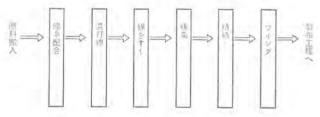


図 2. 紡績工程の概要 Outlines of spinning line.

か、またはパルキー加工した後、製布工程へまわされる。

紡績工程は、短繊維の場合図2.に示すとおり大別して、6工程により構成されている。まず原料繊維を開縮し、必要に応じて他原料と混ぜた後、混打綿工程に入る。

ここで繊維はほぐされ、中の異物を取除きつつ約1 m幅の帯状の ラップにし、更にこれを重ね合わせてシート状に巻取る (ラップ)。この段階では、各繊維は任意方向を向いたパラパラの状態である。次に綿をすくのであるが、ラップを薄く広げて延伸しながら針布でくしけずり、薄紙状のウェブとして、これをまとめて スライバ という太い繊維束を作る。これで一応太い糸となるが、繊維の配向性も乏しく太さむらも多い。

次の練条工程では、スライバを数本そろえて延伸しながら混ぜ、1 本の練条スライバにするが、この練条は普通2回繰り返され、これに

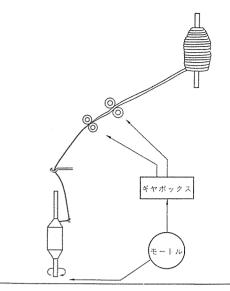


図 3. 精紡の構成図 Mechanical constitution.

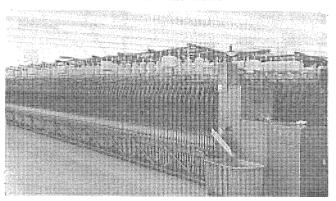


図 4. リングの精紡機外観 Ring spinning machine.

よって繊維の配向性が良くなり、太さむらも平均化される。

精紡工程は普通、粗紡と精紡とにわかれ、粗紡工程では練条スライバを更に引伸ばしてローブ(粗糸)として巻取る(しの巻き)。ローブは、最終の糸の15~25 倍程度の太さで、どくわずかなよりがかかっているが、引張力によって繊維がすべり抜ける程度としてある。精紡工程では、粗紡後のローブから糸にするもので、しの巻を頭上に揚げ、ここから繰出したローブを複数組のドラフトローラの間を通して、フロントローラ速度>パックローラ速度として、延伸しながら細くする。更にこれを高速回転させて、遠心力によりバルーンを作りながらより(ツイスト)をかけ糸にする。

この部分の略図を図 3. に示す。 ここで満管糸は、 ヴイスト をかけるために必要な巻上り形状に限定され、 あまり大形にはできないが、 最後に ワイニッタ 工程に入り、 チース に巻取り、 所定の ヤート 数、 重量に処理されて製布工程へと送られる。

2.2 リング精紡機

次に、新形リング精紡機の概要について説明する。

外観は図 4. に示すとおりで、標準仕様では 1 台当り 396 錘の 2 ピッドル が 2 列に配置されている。

機台の主要構成を図 5. に示すが、直流 ϵ_{-} トル を採用した スピッドルモートル から、 タッゼッシャルベルト を経由して、各 スピッドル を摩擦駆動 する方式で、各 スピッドル は ν パー により停止でき、 糸つなぎを行なうことができる。

一方、スピンドルモートルの動力の一部は、 ギヤボックス により減速され

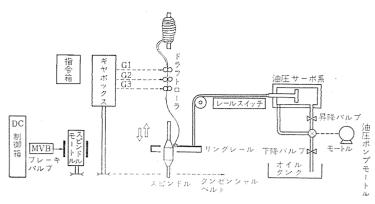


図 5. リング 精紡機の構成 Diagram of ring spinning machine.

表 2. リング 精紡機仕様 Specifications of ring spinning machine.

スピッドル数	396	3		
リ ン グ 径	50 mm			
スピンドル ゲージ	7.5	5 mm		
y 7 F	255	5 mm		
トプロック長さ	1,350) mm		
スピンドル数/ブロック	36	5		
(フロント	2.5 mm	40 mm		
ボトムローラ ボトムローラ ※ セカンド	2.5 mm	27 mm		
₩ - F	2.5 mm	32 mm		
最高スピンドル回転 数	16,000	Orpm		
糸管長き	28	0 mm		
スピンドル モートル	18.	5 kW		
投 台 幅	800	0 mm		
機械長さ	18,740	O mm		

※ 形式により2種類ある

たうえで、ドラフトローラを駆動して糸を延伸させる。

リングレールは,油圧ポンプによって油圧機構を作動させ,油圧サーボ系を構成し,円滑な上下揺動を行なっている。

このリング精紡機の特長としては、次の3点があげられる。

- (a) スピッドル 回転数を変化できる
- (b) 機台幅が小さく, コンパクト な設計
- (c) 油圧制御による円滑な リングレール 昇降

仕様細目は表 2. に示すとおりである。

2.3 オートドッファ

オートドッファは、リング精紡機のアウトエンド側に配置され、巻き終った 満管糸を空糸管と交換して、一ヵ所に集める機能をもつものである。

このいわゆる玉揚工程は、紡績工程の中で最も多くの人手を要するもので、何万錘もの精紡機を限られた人員によってか(稼)働するのに必要不可欠のものである。

構造としては、リング精紡機とオートドッファとは各々独立したもので、電気的制御信号の受け渡しを行なって動作を有機的に継いでいる。オートドッファなしでも少数機台の運転は、玉揚作業を人手に頼れば可能であるが、1台当り数人の熟練作業員を要し、20分以上必要である。オートドッファによれば、無人で3分以内であり、その省力効果はきわめて大きい。

動作は大別して、次の3段階より構成される。

- (a) 準 備……空糸管を繰り出して待機する
- (b) 玉 揚……満管糸を抜取りかごに集める
- (c) 再起動……空糸管をそう入して再起動させる

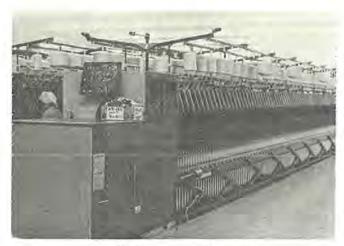


図 6. オートドッファ 外観 Auto-doffer.

オートドゥファ は、玉を揚げるという単一の目的をもつものであり、 機構的にも電気回路的にも定められた一定の動作をするものである が、何万鍾もの精紡機を受持つので、万一故障した時の被害が大き く、高い信頼度を要求される点で注意が必要である。

紡績工程では、操業時間と消費電力量とにより、生産高が決まるといわれているが、ホートドッファ、リッグ精紡機いずれが、ダウンしても操業率は低下し、前後の工程へも直接波及し、その影響は大きい。

特にオートドッファは動作が複雑で、使用リミットスイッチ、出力バルブの 数量が多いので、信頼性の向上に対して設計の段階から十分な検討 が必要である。

図 6. に オートドゥファ の外観を示す。

2.4 使用環境について

紡績工場の中で機械設置台数・人員が最も多いのは、紡績工程といわれるが、リング精紡機は、通常、十~数十台まとめて設置され、何万錘単位で操業されている。

従来の紡績機械では、その電機品はモートルの入・切とか、減圧起動器程度で、電気的には単純なものが主流であった。このリング精 紡機の場合は、制御装置がかなり複雑であるが、できるだけ簡単に 保守できるように設計した。

次に、機台の設置される工場環境について述べる。

通常,工場内は糸切れを防ぐために空調され,温度湿度共に、一 定範囲内にコントロールされているが,一般的に高湿度は電気品にとって不利である。

繊維を扱う関係上風綿が多く, 壁面・機台側面・床面などで, サクションブローのいき届かない部分にたい積した風綿は, アーク発生により 着火し易く, 大きな火災事故につながるので万全の注意が必要である。

モートル 開閉用の電磁接触器は、特に火花発生があるので、制御箱の防じん性能向上は必す(須)条件であり、これでも長い年月の間に風綿のたい積が見られ、定期的な制御箱内清掃が必要である。

この他に、弱電回路の場合は風綿がコネクタに入り込み、接触不良を招く例もあり、部品の選定、接続器具の取付方法などにも工夫が必要である。

最近の工場では空調能力も十分で、良い環境条件となっているが、 古い工場などでは、空調能力不足から風綿が多いとか、温度が35℃ をこえるとか、悪い例もあり、直流モートルプラシの異常摩耗、その他 不具合を招き易いので、特に入念な保守点検が必要である。

3. 設計方針

次に、本リング精紡機および オートドッファ の電機品に関し、どのような基本的設計方針をもって対処したかについて述べる。

これには、機械メーカ側からの要求条件と、装置の最終使用者側 からの要求条件とがあり、これらについて整理してみた。

3.1 保安レベル

先述したごとく装置として特に高信頼度を要求されるので、電気 回路としては、無接点化・半導体化をはかった。

これに対して、機被メーカ・ユーザからは、従来の技術レベルで保守 できる装置を要求されるのは当然である。

装置が故障しても、これによるロス時間、ダウンタイムを短くして、 一刻も早く再起動させるためには、その都度メーカに頼らなくても 修理できるようにする必要がある。

これらの点から次の方針を貫いた。

(a) 信頼度の向上を主眼とする 従って、半導体化をはかる。

(b) 電機品の保守は従来技術で実施できること

半導体部分は、ユニット単位の交換で保守が可能で、ロジック回路は、 リレー回路並みの技術で保守できるよう配慮する。

3.2 フレキシビリティ

指令箱(リング 精紡機用) および AD 制御箱(オートドッファ 用)の主体は、シーケンス 制御回路である。

最近の傾向として大量生産とはいうものの、多品種を扱うので、 リング精紡機の製作段階において扱う繊維の種類に応じて、または ユーザの希望に応じて、若干の仕様変更がある。極端な場合は納入後 においてさえ、変更を余儀なくされることもある。

これに対処して当装置では、論理回路に柔軟性を持たせ、若干の 仕様変更、回路変更に簡単に応じられるものとした。

ビンボード式などもあるが、価格的に高く、またそれ程ひん繁な変更ではないので、その必要性はない。

ここでは、入力信号・出力信号の 増設はないものとして、「インタ ロック条件の変更」、「順序動作の内容変更」に限定し、冗長度の少な いものとした。

3.3 操作性

電気関係に対する操作は、次の3カ所に集約されている。

- (a) DC 制御箱……リッグ 精紡機電源の入・切, 速度調整
- (b) 指令箱·······精紡工程の起動・停止,手動操作
- (c) AD 制御箱……オートドッファ 電源の入・切, 手動操作

特筆すべきことは、操作はすべて女子作業員により行なわれる点で、複雑な操作はすべて小とびらの中に入れ、直接には次の スイッチ のみを操作すればよいようにした。

- (i) 電源の入・切------DC 制御箱
- (ii) 装置の起動・停止……指令箱

これ以外の速度調整・手動操作スイッチ などは、すべて小とびらの 中に設け、かぎを使って開いて操作するものとなっている。

日常の作業は、典型的な流れ作業であり、起動・停止以外は操作 を要しない。

他の操作は、処理する糸の番手が変わった時、スピンドル 速度を変えるとか、トラブル 処理の手段として、手動操作を行なう程度である。3.4 小形化

リング 精紡機が並置される場合、機台間は作業員1名当りの通路分

のみ離して設置され、工場面積の有効利用がはかられる。本機は機 台幅寸法が800mmと小形化されており特長の一つである。

これに合わせて、電機品も幅 800 mm とした。これは、保守などから見てやや小さすぎる寸法であるが、内部配列を十分検討して解決した。

3.5 意 匠

基調として、キュービクルタイプで曲線を避けた直線の組合せにより構成されている。機能的にも、工作的にも、シンプル さを追求した点が見られ、特長あるものになっている。

箱構造としてもよろい窓加工とか、ハンマートン 塗装など、機械部品に足並みをそろえて装置全体の統一化を図っている。

4. 制 御 装 置

当装置の電気的構成は図 7. のとおりである。 各矢印は、制御信号または出力の方向を示す。

各装置の機能について述べる。

DC 制御箱は、いわゆる強電盤で、スピンドルモートル(直流、但し交流の場合もある)の運転および保護を行なうもので、整流電源装置、一次抵抗起動器、および速度調整のための界磁制御装置などを収容しており、指令箱からの指令で運転を行なう。

指令箱は、M、 $MI_{U-UZI y f}$ の信号により、 りっグ 精紡機全体を 制御している。

ととで,M,MI $_{U-U, Z}$ I_{0} f は, $_{U}$ $_{U}$ $_{U}$ の位置検出を行なっている。

次に、AD 制御箱は、糸管の玉揚げを行なう オートドッファ 関係の ν ーケッス 制御を行なうもので、各 ν ールスイッチ の信号を受けて所定の動作を行なう。

特に、糸管をつかむ コンペアレール の位置検出を行なう、ドッフイングス イッチ は重要な役目を果し、 その昇降については、 高い 停止精度が 要求されている。

コンペヤレール の昇降には交流電動機を使い、停止時のばらつきを少なくするよう 特殊な DC ダイナミック 制御方式を開発し、 停止点の誤差を±0.1 mm 以内におさめている。

なお, AD 制御箱と指令箱との間は,動作完了信号の受け渡しを 行ない,自己の動作完了により,相手の動作を再起動させている。

4.1 リング精紡機本体装置 (DC 制御箱・指令箱)

この制御装置は、次のようなモートルと油圧制御用のバルブの制御

を行なう。

(a) モートル

(b) バルブ

ブレーキバルブ ……スピッドルモートルブレーキ 用 昇降 バルブ ……リッグレール 上昇用 下降 バルブ ……リッグレール 下降用

スピンドルモートルには、上記のごとくかご形誘導電動機と複巻形直流電動機の2種類があり、精紡する糸の太さや、種類(長繊維・短繊維・化繊や綿等)などによって選択使用されており、制御装置も、直流モータの制御には DC 制御箱、交流モートルの制御には AC 制御箱の2種類がある。

図8. は、直流 モートルによる自動運転の タイムチャート である。交流 モートル の場合は スピッドルモートル の速度切換えがなく なるほかは、 直流の場合と全く同一動作である。

これらの制御 シーケンス は、RD 形 ミニチュアリレー、RDT 形 トランジス タタイマ と、半導体 ロジック 回路により構成されている。スピンドルモートル が誘導電動機の場合は、起動方法は 丫ーム 起動を採用しているが、速度切換えはせず一定速度である。この場合、速度切換えは ブーリ の 取換えによって行なわれる。スピンドルモートル が直流電動機の場合は、起動方法は、電機子電圧制御による3 段階の クッション 起動を行ない、

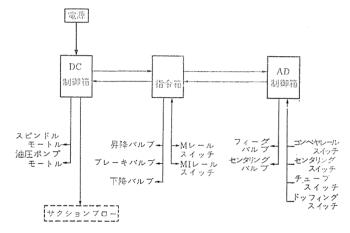


図 7. 電気系の構成 Diagram of electrical system.

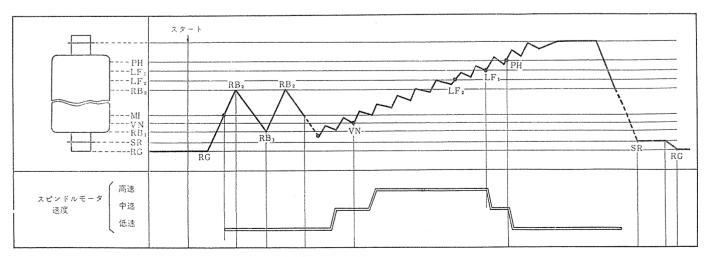


図 8. DC リング 精紡機の タイムチャート Timing chart of spinning machine.

常用速度については、界磁電流による速度制御を行なっている。設定速度は、低速(ミニスピード)、中速(フォーメーションスピード)、高速(ノーマルスピード) と3段階あり、シーケンスにより選択される。

また、オプション機能として、低速から中速、または中速から高速に切換わるときに、最高 20 sec (つまみにより任意の時間を調整することができる)までの クッション 時間をとることができる。

次に糸管巻取りは バンチング動作、定常巻き付け動作、トップバンチ動作、および尻巻き動作に分けて行なわれる。

バンチンク動作とは、バンチンクタイムの間、リングレールが RB1と RP2の間で上下する動作で、スピンドルモートルは、MI 検出によって低速で回転する。またとの動作は、リングレールが、RG(ラペット 反転位置)を検出している時のみ動作可能で、未検出の場合は、直ちに次の定常巻き付け動作を行なうようになっている。バンチング動作完了後、リングレールは巻き始め位置へ機械的に戻った後、定常巻き付け動作を行なう。リングレールは油圧サーボにより上下に揺動を繰返し、スピンドルモートルは、低速から中速・高速へと切り換わりながら巻き付けを行なう。 LF1 検出によりスピンドルモートルは中速に、そして PH を検出して低速に切換わり、レールは上限まで上昇し、トップバンチ動作となる。タイマ時間後レールは下降し、尻巻き動作を行ないレールは RGまで下降して1サイクルが完了する。

この制御回路の保護装置としては,特に

- (1) 界磁電流検出(直流モートルの場合のみ)
- (2) タッションスタート 用抵抗の温度上昇検出 (直流 モートル の場合のみ)
 - (3) モートル の過電流検出
 - (4) 油タンク内の温度検出

を備えている。制御箱の構造については紡績工場特有の風綿があり、電磁接触器の開閉 r-9 による発火の危険もあるので、完全密閉の防じん(裏)形で、特に DC 側御箱については、強制風冷方式となっている(図 9.)。 回路の点検も、とびらの開閉をできるだけ少なくすべく、 $f_{x=0}/f_{0}$ ついう(発光 $g/f_{x}/f_{x}/f_{y}$)を使用し、外部よりの $f_{x=0}/f_{y}$ 0を容易に行なえるようにした。

4.2 オートドッファ装置 (AD 制御箱)

オートドッファ 装置は、本体装置への紙管の搬入・搬出を行なうもので、動作は、図 11. および図 12. のとおりである。

コンベヤ 駆動は、DC モートルで、当社の ダイヤロール (単相全波 サイリス タレオナード 装置) により制御している。速度は、可変抵抗器によって 調整することができるが、低速・中速・高速の3個の調整器を備えて選択使用している。

ブレーキは、ダイナミック制動を使用している。

制御回路は、本体装置と同じように RD リレー, RDT タイマ と半導体 ロジック 回路さらに ステッピングリレー によって シーケンス 回路を構成している。

ステッピングリレー は、シーケンス中のある ステップ において、条件が満足されると 1 ステップ ずつ歩進し、順次 シーケンス を進め、最後に最終 ステップ より 0 ステップ に自動的に ステップ し リセット される。 もちろん手動による ステップ 歩進も可能である。

制御箱の構造は完全防じんタイプである。また本体の制御箱と同じように、外部から回路チェックができるように、ネオンランプ・発光ダイオードなどを使用している。シーケンスのステップ表示も発光ダイオードを使用し、とびらの開閉をしなくても回路チェックが可能である。(図 13.)

図 9. DC 制御箱外観 DC control box.

図 10. 指令箱外観 Command control box.

シーケンス番号	オートドッファ動作
00	精紡機の LF2 信号を受けるまで待機
01	LF2 の信号によりレール出る
02	糸管供給位置までレール上昇
03	供給モータ回転し糸管供給開始
04	精紡機の RG の信号を受けるまで待機
0.5	RG の信号によりレール上昇
06	スピンドル直上まで進入
07	満管糸つかみ高さまで下降
08	グリッパブラス方向へ移動、満営糸をつかむ
09	ゴムチューブに空気入る
10	つかんだまま上外
H	つかんだまま出る
12	バス (調管糸 糸切れチェック)
13	グリッパ マイナス方向へ移動, 満管糸排出
14	ゴムチェーブに空気入り、センタリングガイド出る
15	スピンドルの直上まで進入
16	空糸管そう入のため安全確認
17	空糸管そう入しつつ空気を抜く
18	センタリング ガイドリセットの確認
19	グリッパ マイナス方向へ動き糸管を外す
20	レール上昇
21	レール出る
22	特紡機に信号を送り起動させる
23	裕 納

図 11. オートドッファ の動作 Sequence step of auto doffer.

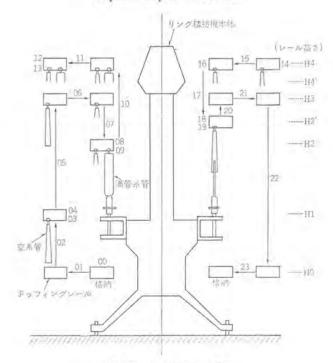


図 12. オートドッファ の動作 Operating mechanism of auto doffer.

図 13. AD 制御箱外観 AD control box.

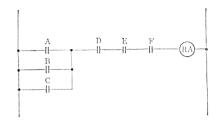


図 114. リレー 論理回路 Relay logic circuit.

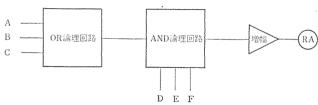


図 15. 半導体論理回路 Semi-conductor logic circuit.

4.3 半導体論理回路

半導体を応用した無接点論理回路は、いろいろな回路方式があるが、ここでは、ダイオードマトリックス 回路を主体に構成し、きわめて シンプル でわかりやすく、同時に経済的なものとした。

図 14. の リレー 論理回路を、半導体論理回路に置き換えると、原理的に図 15. のようになるが、ダイオードマトリックス 回路の中で OR、AND 回路の構成を、原則として常に図 15. のように構成して、きわめてわかりやすい回路とした。

4.4 界磁制御装置

次にスピッドルモートルの速度制御について、詳述する。

直流電動機の制御方式としては大きく分けて,電機子制御方式と 界磁制御方式の二つの方式がある。表 3. は, これら二つの制御方式の特長を18.5 kW/12.3 kW, 3,000/2,000 rpm の電動機を例にとって示したものである。

出力特性に関しては、界磁制御の場合は、通常、定出力特性であるが、とこでは、定トルク特性の場合も併記してある。

速度変動率は、最大速度に対する百分率で示す。制御性能面から見ると、変速化が 1/4 を越える時、および速度変動率を特に小さくする必要がある時は、電機子制御に頼らざるを得ないが、そうでない場合は、界磁制御を利用すれば、制御装置は小形で安価となることがわかる。また、電動機に関しては、PG 帰還のものは、PG が軸端に付属しているので、軸方向の長さが長くなっているが、取付

表 3. 直流電動機の制御方式比較 Comparison table of DC motor control.

16	[] 街	万	귉	Č.	電 機 子	制 御	界磁	御 御	
排	自	ル・	- 7	^	電機子電圧帰還	PG 帰還	なし	PG 帰還	
	Н		J)	定トルク	定トルク	定 出 カ (定トルク)	定 出 力 (定トルク)	
特	速	度	Н	Ŀ.	1/20~1/30	1/50	1/2 (1/1.5)	1/4 (1/1.5)	
161.	速度	電源電圧変動 ±10%			3	0.5	5	1	
性	· 動 密	変 負 荷 変 動 率 (%)			3	1.0	6	2	
	(20)	卷		合	6	1.5	11	3	
寸	餇	御	技	ï	120	120	75	100	
寸法比(%)		り機 定さ) 定			85 85	100 100	85 88	100 105	
	200	制益	数	迢	125	130	85	100	
605	V	電	勯	機	85	95	90	100	
格	用	合		ar	105	112.5	87.5	100	
比	400	制益	抄	m	135	140	85	100	
(%)	v	從	動	機	85	95	90	100	
The state of the s	用	合		計	110	117.5	87.5	100	

表 4. 界磁制御装置仕様 Specifications of speed control unit.

用 途	直流電動機 界磁制御用(電機子電圧:一定)
定格界磁電流	DC 3 A (連続)
定格界磁電圧	DC 140 V (連続)
電 源	AC 200 V 50/60 Hz, 220 V, 60 Hz, ±10 %
周囲温度	-10°C~+50°C
取付形式	開放形 (パネル形式)
制御方式	単相全波整流方式(混合ブリッジ)
制御信号	DC5V (入力抵抗 10 kΩ)
速度精度	電源電圧変動±10%に対して1%, 負荷変動10~100%に対して2%
その他	最低界磁保証(定格界磁電流の1/5~1.2 設定可) 界磁電流ゼロ時の安全回路(界磁電流 0.35~3 A 検出値設定可) 適合する PG 仕様 DC 30~150 V (最高回転数時) AC (3 φ) 20~100 V (最高回転数時) 内蔵 CT に適合する電動機の定格界磁電流 0.6~3 A

スペース としては 大きな差はない。 (当装置では PG を別置きとして使った)

精紡機の駆動用としては、上記から総合的に判断して界磁制御方式を、制御装置の小形・経済的な点に注目して採用することにした。

4.4.1 装置の概要

表 4. に本装置の仕様を, また, 図 16. に ブロック 図を示す。

本装置は、大きく分けて主回路部と界磁制御部から構成されており、主回路部は 図 16. 中の起動 コンタクタ MC1~MC3、起動抵抗器 R1, R2 および三相全波整流回路 DS で示される部分である。 また、界磁制御部は、図中一点鎖線で囲まれた部分で、PG により検出された速度帰還信号と、速度指令値との差を増幅する速度制御増幅器 IC1、CT により検出された界磁電流帰還信号と、最大界磁電流指令値および速度制御増幅器の出力により合成された電流指令値との差を増幅する電流制御増幅器 IC2、点弧パルスを発生する移相器、単相混合 ブリッジ 結線された サイリスタスタック、 および界磁電流が必要な値

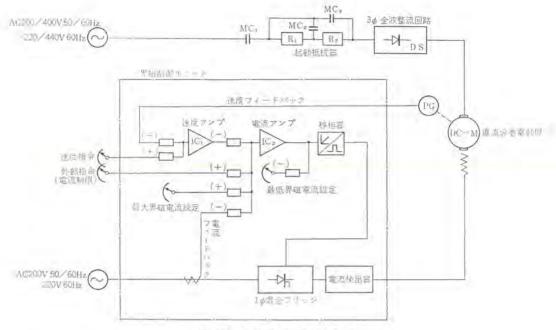


図 16. 界磁制御装置 ブロック 図 Diagram of speed control box,

図 17. 界磁制御装置外観 Speed control unit.

以上、流れているか否かをチェックする電流検出器により、構成されている。

主回路部は、電源電圧または電動機出力容量の変更に伴い設計変更の必要があるが、界磁制御部は、常に200/220 V の電源を使用し、電動機の定格界磁電流を0.6~3 A に設計することにより統一をはかり、標準化したユニット構造にまとめた。このユニット部の外観を図17.に示す。

4.4.2 装置の特長

本装置は精紡機用として、応答性・安全性・保守性に重点をおい て製作され、次のような特長を有する。

- (1) 速度指令入力と速度との関係は、図18. に示すごとく指令 入力と速度は比例関係にあるが、指令入力を0V以下まで下げても、 最低速度を保持するように、また、5V以上に上げても最大速度で クランプし、安全性を高くしている。最低速度は、図16. 中の最大界 磁電流設定抵抗器により設定し、最大速度は、最低界磁電流設定抵 抗器により設定する。
- (2) 起動は、速度指令入力 OFF の状態で抵抗起動し、起動後、速度指令入力 ON とすることにより、設定速度まですみやかに立上 らせることができる。
- (3) 電源電圧・電動機容量のいかんにかかわらず,同一の界磁 制御ユニットが使用でき、保守が容易である。
 - (4) 界磁電流が規定以下の時,警報動作する電流検出器を内蔵

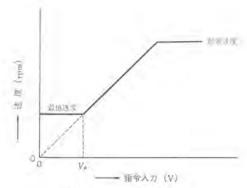


図 18. 指令入力一速度特性 Input-speed curve.

しており、界磁回路断線時の保護が確実で安全である。

- (5) 半導体制御回路と電力回路が絶縁されているので、取扱い 易く安全である。
- (6) 必要に応じて電流制限がかけられるように、電流制限用端 子を設けてあり、他の用途にも使用できる。

4.4.3 特性

特性の実例として、18/12.3 kW 3,000/2,000 rpm の電動機を制御 した場合の電源電圧変動特性と、負荷変動特性の試験結果を図 19. および図 20. に示した。

図 19. は、電源電圧が変化した場合の速度の変化を図示したもので、電源電圧 200 V の時に曲線①は 2,000 rpm に、 曲線②は 3,000 rpm に設定したものである。

図 20. は,負荷が変化した場合の速度の変化を図示したもので, 50 %負荷の時に曲線①は 2,000 rpm に,曲線②は 2,500 rpm に,曲 線③は 3,000 rpm に設定したものである。

±10%の電源電圧変動に対しては、3,000 rpm に設定した時1%、2,000 rpm に設定した時0.8%の速度変動率で、仕様の1%を満足している。また、0~100%の負荷変動に対しては、3,000 rpm に設定した時1%、2,500 rpm に設定した時0.3%、2,000 rpm に設定した時0.5%の速度変動率であり、必要な2%よりかなり好結果を

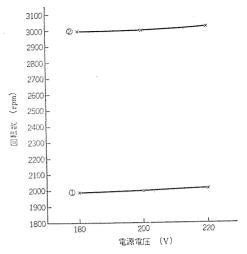


図 19. 電源電圧変動特性 Voltage-speed characteristics.

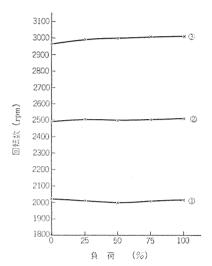


図 20. 負荷変動特性 Load-speed characteristics.

得ている。

4.5 レールスイッチ

リングレール の昇降などは、高ひん度動作で一般的な機械的 リミットス

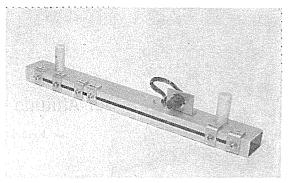


図 21. レールスイッチ 外観 Main rail switch.

イッチでは、寿命的に限界があるため、接点容量は小さいが寿命が長い リードスイッチ を採用した。これを アルミニュウム 角 パイプ の中に取付け、レールスイッチ と称している。

これらは機械動作に連動する MK マグネット・OP マグネット などにより 磁気で駆動される。

とのように リードスイッチ を使うことにより長寿命化をはかり、環境 条件にも耐えるようになった。

製品例を図 21. に示す。回路の半導体化に伴い、リミットスイッチの電圧電流 レベルが、小さくなる傾向にあるが、今後 このような リードスイッチ の適用は、増加するものと思われる。

5. む す び

本装置はすでに多数生産工程に入り、順調に実動を続けている。 現在、最も効果的だったと評価されているのは、シーケンス 制御回路 の フレキシビリティで、仕様変更とか、 機械の改良にともなう シーケンス 変更もほとんど ハードウェア に関係なく折込める点で、 非常に使い易 いものとなっている。

この制御 ロジック および直流電動機の界磁制御装置は、同様な各種の機械装置に広く応用できるものである。

以上、リング精紡機用電機品について紹介した。なお一層の改良を重ねて、より高性能化をはかる予定である。

静止衛星の姿勢制御試験装置

若 杉 登*•芳野 法象*•金 井 宏* 小勝 国弘*•沢田 粂二*

An Attitude Control Simulator for Geostationary Satellite

Kamakura Works

Noboru Wakasugi • Hozo Yoshino • Hiroshi Kanai Kunihiro Kokatsu • Kumeji Sawada

Simulation of the attitude of satellite on synchronous orbit is generally made by means of a computer. However, if an air bearing with three axis degree of freedom is made use of to immitate the dynamics on orbit, hardware simulation becomes possible. Hardware simulation is not only effective to analyze the spacecraft dynamics, but also effective in the development of subsystem hardware such as jet thrustor and control electronics, and further it is effective for the training of attitude control operation.

With the object of achieving the attitude control technique which is one of the basic technology of the satellite, a test device has been developed by Mitsubishi, the outlines of which being introduced herein.

1. まえがき

今までに静止軌道に打上げられた衛星の大部分はスピッにより姿勢安定され、スピッ軸が軌道面に垂直に保たれている。衛星は静止軌道上では太陽放射圧や地磁気モーメットなどの外乱を受け、長時間の間には次第にその姿勢やスピッ率が変動するので、ときどきこれを修正する必要がある。宇宙空間においてスピッをしている衛星は一種のジャイロスコープであり、その運動もジャイロスコープの特性をもつ。つまり、重心まわりにあるトルクを印加すると、そのトルクペクトルと衛星のスピッペクトルのペクトル積の方向に、石ねじが回転するようにプリセッション(歳差運動)を行なう。

この関係を図 1. に示す。

このように、衛星の姿勢を望ましい方向へ修正するには以上の法 則にしたがう方向へ トルク を加えなければならない。

トルクを与える手段としては、ガスジェット方式が最も一般的である。 ジェット 用 スラスタ も衛星と共に回転しているから一定方向のトルクを 付加するためには、図 1. にも示すように スラスタが一定の位置にき たときだけ スピン に同期して噴射すればよい。ソレノイドバルブの開閉特 性および スラスタ 特性(時間おくれ、スラストバターン など)を考慮して、 衛星の回転の約 60 度にわたって噴射するよう ソレノイドバルブを 制 御 する。

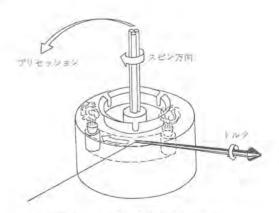


図 1. スピッ 衛星の姿勢 ダイナミックス Attitude dynamics of spinning satellite.

以上の姿勢制御 ダイナミックス は計算機による ソフトウエア シミュレーション によって解析することが多いが、宇宙空間の運動を模擬する低摩擦空気 ペアリング を使用した スペースクラフト シミュレータ によって、ハードウエア シミュレーション を行なうことが可能である。

人工衛星の宇宙における運動特性そのものが我々にとって未知の 分野に属するので、電気一機械系としての人工衛星 n-Fウェアと、 その姿勢 ダイナミックス との関連を実際にとらえる必要が生じた。

本文では前止衛星の姿勢制御を実験する目的で製作した試験装置 について、その ハードウェア を中心とした概要を述べることとする。

2. 姿勢制御試験装置の目的

一般に人工衛星技術は広い工学分野にわたっており、それらすべての分野が一様に連携しつつ機能を果たさなくてはならない。従って個々の分野で新しい技術が要求される以上に高い総合技術力が必要となる。本試験装置のうち、模擬衛星だけについてみても、太陽センサには光学、地球センサに赤外線工学が必要とされ、これらの信号を処理する制御回路にはアナログ、ディジタルの電子回路技術、制御工学が必要とされることはいうまでもない。さらにガスジェット系には流体工学、構造の設計には構造力学、材料力学の知識が不可欠である。これら多くの技術が集中している衛星を動作させること自身、総合技術としての衛星技術の完成という観点から大きな意義があると考えられる。

具体的な本装置の使用目的を以下に示す。

(a) 姿勢制御 システム の各 コンポーネント の開発試験

ジェットノズル・制御回路・高圧 ガス 系・センサ 系などの構成要素を開発してゆくに際し、本試験装置に組込んで試験を行なうことにより、 軌道上における機能、性能の予測、確認を行なうことができる。

(b) 姿勢制御運動の解析

各コレポーネントを組み合わせてのシステム 試験において、実験結果 と、ソフトウエアシミュレーションの結果の比較から、姿勢制御系としての 運動の解析手法の確立および定量的なは(把)握が可能となる。

(c) 姿勢制御 オペレーション の解析

地球センサによって衛星の姿勢を検出し、その信号をデータ処理系で実際の姿勢角として求め、この姿勢角を目標の値にするために必

要なコマンドを発信して、ジェットを噴かせるという姿勢制御操作を行なうことによって姿勢制御に必要なオペレーションを体得する。

3. 装置の構成

本実験装置は

- (1) 模擬衛星
- (2) 地上局
- (3) 支援装置

から構成されている。本節ではこれらについてその概要を説明する。

3.1 模擬衛星

模擬衛星はその重心を三軸自由度を有する空気軸受によって支え、宇宙空間における姿勢運動を模擬できるようになっている。低摩擦の軸受上で運動するため、有線やスリップリングによる信号の授受が不可能であるので、信号関係は無線により地上局とやりとりを行ない、電源については模擬衛星上のバッテリから供給する。このため、機能・構成としてはミッション機器とアポジーモータを除けば実際の静止衛星と低低同一のものとなる。

本衛星の構成は以下のとおりである。

- (a) 構 体 (円筒形)
- (b) 電源系: バッテリ, DC-DC コンバータ
- (c) 姿勢制御系: 制御回路, ニューテーション ダンパ
- (d) 推進系: عن2, 配管系, スラスタ, 電磁弁
- (e) センサ 系: 地球 センサ, 太陽 センサ
- (f) テレメータ 系: コミュテータ, 副撤送波変調器, 送信機
- (g) コマンド 系: 受信機, コマンドデコーダ
- (h) ハウスキーピング系: 温度/圧力 センサ, 増幅器
- (i) インテグレーション 系: ワイヤハーネス, バランス ウエイト

3.2 地上局

地上局は,衛星からテレメータ回線で送られてきた姿勢 データ,ハウスキーピングデータ,コマンド状態データを受信し,復調し,処理して姿勢状態,スピン率,衛星内部の温度,圧力などの状態をパネルに表示する。さらに,これらの状態に基づいた指令コマンドを,コマンドエンコーダ,コマンド送信機を通して衛星に送ることができる。

本地上局はさらに次の各部より構成される。

- (a) テレメータ 受信部: 受信機, 副搬送波復調器, PAM デコミュテータ
 - (b) データ 処理部: 姿勢角演算装置, スピッ 率検出装置
- (c) 表示部: 衛星内部状態表示,姿勢角,スピン率表示,コマンド 状態表示
 - (d) コマンド 送信部: 符号発生 パネル, コマンドエンコーダ, 送信機
 - (e) 電源制御部

3.3 支援装置

姿勢制御試験を行なうために必要な補助装置であり、以下の装置 から構成される。

- (a) スペースクラフト シミュレータ (空気軸受系)
- (b) 静つり合い,推力測定装置
- (c) 疑似地球,太陽源
- (d) 姿勢角, スピン 率検出装置
- (e) システムモニタ 制御系
- (f) 窒素 ガスブースタ
- (g) ドーリ, クレーン (衛星移動用)

この他既存の設備で本試験のために必要なものは以下のとおりで

ある。

- (i) 慣性能率測定装置
- (ii) 動つり合い測定装置
- (iii) 一軸 スピンテーブル

4. 模擬衛星

4.1 衛星システム

本実験を行なうために製作した模擬衛星図 2. は、その重心で三軸自由度を有する空気軸受により支えられ、宇宙空間での姿勢運動を模擬できるようになっている。軸受上でスピンペクトルが上を向く方向に 60 rpm で回転し、タンクに充てんされた 200 kg/cm² の高圧窒素ガスを 5 kg/cm² に滅圧して、200 g の推力をもつ軸方向 スラスタを パルス状に噴射し、1 パルス あたり 0.05° の姿勢制御を行なう。また 200 g の周方向 スラスタ 2 個によってスピンアップを行ない 風損による スピン率の低下を補償する。 ジェットの噴射により誘起された ニューテーションは、2 個の シリコンオイル 封入の円環形 ニューテーションダンパにより減衰させる。

衛星の ブロック 構成を図 3. に示す。図からも明らかなように、多くの サブシステム が相互に接続されており、 相互干渉なく動作させる ために、シールド、アース 法、フィルタリング また最適な機器配置の選択など衛星 システム インテグレーション の技術が要求される。

4.2 檮 体

模擬衛星構体の設計上で特に配慮した点は、以下のとおりである。

- (a) 軽量であること
- (b) 空気軸受上での所定の回転自由度があること
- (c) 風損による スピン 減衰が少ないこと
- (d) 機器の取付け取外しが容易であること
- (e) 取扱いや移動が容易で十分な強度を有すること
- (f) インテグレーション後、外部から容易に動静つり合いの微調整ができること
- (g) インテグレーション 後,外部から充電や窒素 ガス の充てんが容易であること

これらの条件を満足する構体形状として,直径 900 φ・高さ 620 h の円筒形を採用した。最終重量は,空気軸受を含めて約 35 kg である。構造は,空気軸受(質量中心および形状中心)を取付けた ハニカム 製の中央 フラットデッキ を中心とし,上下 2 枚の ハニカム 製 カバーを内部下部円筒と内部上部支柱で支える形にした。外周は アルミアングル 材の溶接構造に 16 枚の分割 パネル をねじ止めとした。外部への突起物は アンテナ 以外はなく,ノズル等も円筒内部に収まり, 充電や窒素 ガス 充てん口を持ち、動静つり合いの微調整も外部から ドライバー1 本

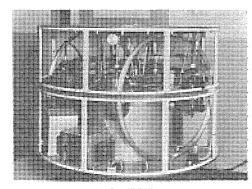


図 2. 模擬衛星 Interior view of satellite.

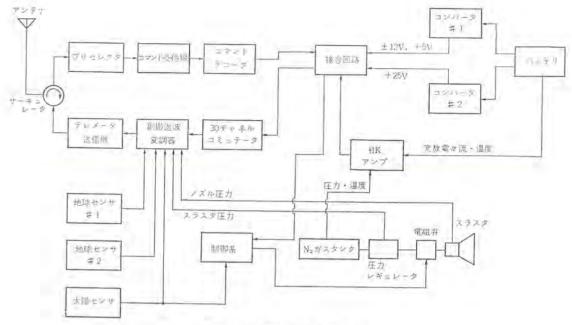


図 3. 模擬衛星機能 ブロック 図 Functional block diagram of satellite.

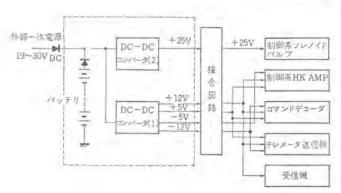


図 4. 電源系 ブロック 図 Functional block diagram of power supply subsystem.

で容易に行なえる。風損によるスピン減衰設計値は、60 rpm スピンで 2.5 分間に約 10 %減衰する。また、初期スピンを掛ける ローラの レールは、中央 フラットデッキの外周に設けてある。衛星のつり上げは、上部 カバー上に 4 本の フック を取り付けて行ない、つり上げた状態での移動も可能である。また、下部に アダプタ を取付けて台車による移動も 可能である。

4.3 電源系

電源系は、模擬衛星に必要な電力の供給、制御、貯蔵を行ない試 験を通じて衛星の機能を支障なく発揮させるものである。

電源系の構成を図 4. に示す。

電源系サブシステムであるバッテリ、コンバータについて次に述べる。

(1) バッテリ

本衛星に積載されている パッテリ は、ニッケル・カドミウム (Ni-Cd) セルで、数は 20 個直列、容量 5 AH で構成されている。

姿勢制御 シミュレーション 時は、外部一次電源は供給されず バッテリ に よってすべての電源がまかなわれる。

(2) DC-DC コンパータ

本衛星に積載されている コンバータには、エネルギー 蓄積 トランス 形を用いている。

主な特長としては、効率、負荷トランジェントおよび無負荷時のレギュレーションが他のタイプのものと比較して良く、また機構的にも部品

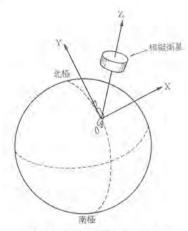


図 5. 地球固定 オイラー 座標系 Earth fixed Eulerian coordinate system.

数が少ないため寸法、重量が小さくなる。

4. 4 姿勢制御系

衛星の姿勢を制御するに際して、ガスジェットの噴射を制御するエレクトロニクスが必要である。一般の静止衛星においては地上局側で必要な位相と継続時間をもった噴射信号を発生し、これをリアルタイムコマンドによって衛星へむけて発射することによって衛星のガスジェットの噴射を制御している。本試験装置のコマンド系はリアルタイムコマンドの機能がなく、ON-OFFの機能のみであるため、噴射信号の発生を衛星上で行なう必要がある。

本実験のためには、図 5. に示すような地球固定 オイラー 座標系を使用している。つまり真東方向を X 方向、真北方向を Y 方向、天頂方向を Z 方向と定義する。 正規の状態で 衛星の スピッ軸は Z 軸に一致している。いま、姿勢制御は X 軸、 Y 軸まわりのみで行ない、任意の方向への姿勢制御は X 軸まわりと Y 軸まわりの別御を必要な割合で組合わせて行なうことにすれば、ジェット 噴射の位相としては X、Y 軸まわりのおのおのの正、負の合計 4 種類のみで可能となる。図 6. にジェット 噴射の位相の関係を示す。図中、例えば X ⊖と書いてある範囲で ジェット を噴射すると、その結果、衛星が、X 軸まわりに、右ねじが負の方向へ進む向きに傾くことを表わす。

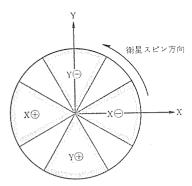


図 6. ジェット 噴射位相 Phase relation of gas jet pulsation.



図 7. 姿勢制御 エレクトロニクス ブロック 図 Functional block diagram of attitude control electronics.

地上からのコマンド指令はX,Yの選択、⊕、⊖の選択の合計4種類のON-OFF コマンドであり、この4種類を適宜組合せて所定の機能を発揮させる。コマンド項目については、4.7節に述べてある。図からも明らかなように、位相は衛星の1回転を90°間隔で4等分した位置で常に一定である。この信号を衛星上で発生するのが姿勢制御エレクトロニクスの機能である。

衛星の1回転ごとに、太陽 e_2 サが基準方向を検出して n_1 ス 信号を出す。 姿勢制御 π_1 クトロニクス の中の n_1 ス てい(近) 倍回路が この入力 n_1 ス を受け、その n_2 倍の n_1 の一の発生する。本装置では n_2 すなわち n_2 6 倍の n_1 が発生される。この機能は入力 n_1 の間隔(すなわち衛星の n_2 7 に関係なく保たれるので、発生した n_1 スを n_2 7 で計測し、おのおのの位相に相当する n_2 7 数によって n_2 7 を制御してやれば、衛星の n_2 7 率に関係なく、 n_2 90 間隔という位相関係が保たれる。

以上から明らかな よ う に、姿勢制御 エレクトロニクス 部は太陽 センサ 出力を入力とする位相同期回路の働きをするものである。

図 7. に動作 ブロック 図を示す。

噴射角発生回路は内部のカウンタによって、 $X \oplus$ 、 $Y \oplus$ 、 $X \ominus$ 、 $Y \oplus$ 、 $X \ominus$ 、 $Y \oplus$ の4種の噴射位相のおのおのを計数し、 フリップフロップ を駆動して噴射 パルス を発生する。 モード 指令回路は姿勢を修正するために上記四つの タイミング のどこで実際に ガス を噴射するかを、コマンド 信号によって決定し、ソレノイドバルブ を駆動する。

4.5 推進系

静止衛星の補助推進系としては、モノプロペラント・ヒドラジン が多く使用されているが、 今回は取扱いやすさの面から窒素 コールドガス システム を採用した。

本試験装置の推進系は、図 8. に示すように 4 個の タンク にたくわえた 200 kg/cm² の窒素 ガス を圧力調整器で 5 kg/cm² の一定圧に落とし、電磁弁の ON-OFF により スラスタ から噴射する。スラスタ は、衛星の スピン 軸に平行に配置した姿勢制御用 スラスタ 1 個、質量中心を通る面内にある スピンアップ 用 スラスタ 2 個の計 3 個で、推力は 50 g、100 g、200 g の 3 種類の取り換えが可能である。

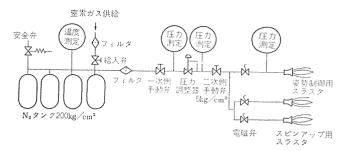


図 8. 推進系の構成 Propulsion system configuration.

表 1. テレメトリ 系 性能諸元 Telemetry subsystem specification.

1. 送信機	
主撤送波周波数	½ 136.69 MHz
主撤送波周波蒙	效安定度 5×10-5 以下
送信出力	10 mW 以下
主搬送波周波	数偏移 1 rad
2. 副撤送波変調器	
中心周波数	$10.5\mathrm{kHz}$
	14.5 kHz
	22.0 kHz
	$30.0\mathrm{kHz}$
	40.0 kHz
	52.5 kHz
変調入力レベル	レ 各チャネル共 O~十5 V
周波数偏移	各チャネル共士7.5%
3. コミュテータ	
チャネル数	30 CH
コミュテーショ	コン速度 75 sample/sec

ノズルの設計は、一次元等 エントロピー流の仮定に基づいて行ない、 粘性による損失は実験で求めることとし、ノズルを定常状態で作動させ、ノズルチェンバ 圧力・推力を測定して補正係数を求めた。実験での 制御用噴射は パルスモード で行なうため、 過渡応答が重要であるので、 計算機による シミュレーション と実験による実測を重ねて行なった。

本補助推進系に使用した コンポーキント は、いずれも 地上用の国産品 を流用して模擬衛星に積載したが、過渡応答特性や信頼性の面で実 用とはならないので、別途宇宙用の物を購入して実際の衛星に使用 できる補助推進系として、現在試験を続行中である。

4.6 テレメータ系

模擬衛星内部の状態や各種 センサの信号を地上局で モニタするために、テレメータ 系が使用される。信号には、地球 センサパルス や太陽 センサパルス のように パルス 波形を リアルタイムで送る必要の あるものと、温度・電圧など、変化の急激でないものの 2 種類がある。 リアルタイム信号は直接副搬送波を周波数変調する。 変化が急でない温度や電圧などの内部状態を示す信号は コミュテータによって周期的に サンプリング され パルス 振幅変調信号として 各信号を多重化し、 それによって副搬送波を周波数変調する。 ついで各副搬送波によって主搬送波をふたたび周波数変調する。

表 1. に送信機、副撤送波変調器、コミュテータの性能諸元を示す。

4 7 コマンドダ

コマンド系の機能は地上から送信されたコマンド信号の受信と解読を行ない、衛星内各サブシステムに必要な指令を伝達することであり、コマンド 受信機および コマンドデコーダ から構成される。

コマンド 受信機は周波数 148.5 MHz の AM 受信機であり、復調出力は PCM/FSK/AM 信号である。 この信号が コマンドデコーダの入力となる。デコーダはこの入力信号を解読し、10 項目の指令信号を発生する。コマンド 方式の概要は以下のとおりである。

(a) コマンド数 10項目

(b) コマッド形式 PCM (PRN コード33 ビット)

(c) 変調方式 PCM/FSK/AM/AM

(d) Europ 500 BPS

(e) 副搬送波周波数 7kHz, 9kHz

(f) 撤送波周波数 148,25 MHz

(g) 送信出力 0dBm

4.8 ハウスキービング系

衛星本体は空気ベアリングで浮上し、スピンしているので、内部の各サプシステムの作動状態をテレメータにより監視しておき、危険な状態が生じた場合にはいちはやく適当な処置を講じて実験者の安全をはかり、装置の損傷を避ける必要がある。このため、内部状態をセンサで検出し、増幅してテレメータ系へ供給するのが ハウスキーピング系の機能である。計測する項目と計測範囲は以下のとおりである。

(a) タンク 圧力 0~260 気圧

(b) 920 温度 0°~50°C

(c) レギュレータ圧力 0~10気圧

(d) ノズル 圧力 0~5 気圧

(c) パッテリ 電流 -1.5 A~+1.5 A

(f) パッテリ温度 0~50°C

センサ は、圧力系統が 半導体圧力計、タンク 温度が白金抵抗温度計、 パッテリ 温度が サーミスタ であり、パッテリ 電流は、パッテリ に直列に 0.1Ω の抵抗を接続し、この両端の電圧と極性を検出する。

アップはすべて U=r IC による 2 段増幅回路で、上記の測定範囲が $0 \sim 5$ VDC に コッティショニックする。特性はすべて直線性である。

5. 地 上 局

衛星からの姿勢情報を受信し、処理して必要な姿勢修正を指令する役割を果たす。

5.1 テレメータ受信部

テレメータ 受信部は、 衛星から送られてきた テレメータ 信号を受信、 復調しておのおの必要な データ 処理装置や表示 パネルへと供給する。 機能 ブロック 図を図 9. に示す。

また, 計測項目を表 2. と表 3. に示す。

5.2 データ処理部

姿勢に関する テレメトリデータ の処理装置として,姿勢角演算装置と スピン 率検出装置がある。

(1) 姿勢角演算装置

これは地球 センサの テレメトリデータ を処理して スピン 軸の姿勢 誤差を検出するものである。 静止軌道上では、 衛星の スピン 軸を軌道面に 垂直に制御する。(このとき地球の中心が衛星赤道面上にくる)。 このために地球 センサが地球を走査する パルス 幅より姿勢誤差を検出する。実際の静止軌道上では、 1個の地球 センサの出力信号を 衛星の 1 公転周期 (1日) モニタ することにより、姿勢誤差を測定できる。この装置では、 疑似地球源を 2個用い、 さらに南北 1 対の センサ出力を同時に用いることにより、 地上で 瞬時に ヨーおよび ロール 軸の姿勢誤差を検出し、パネル上に角度表示する。このために独自の演算装置を内蔵する。以下に動作原理を示す。

衛星には、南北方向に一対の地球センサが、衛星赤道面に対して ±6.5°に取付けられている。これらの出力パルスは、姿勢誤差が0の ときには等しい。一方図10.に示すとおり、姿勢誤差が存在すると、 これらのパルス幅の間には以下の関係が成り立つ。

図 9. テレメータ 受信部 ブロック 図 Functional block diagram of telemetry receiving unit.

表 2. 副搬送波 計測項目 Subcarrier telemetry item.

SCO 1	コミュテータ出力信号	1RIG #12
SCO 2	レギュレータ圧力	IRIG ₹13
SCO 3	ソズル圧力	IRIG#14
SCO 4	地球センサミ	IRIG # 15
SCO 5	地球センサき2	IRIG#16
SCO 6	太陽セシザ	IRIG \$17
A commence of the same of the same of		

表 3. 30 CH コミュテータ 計測項目 Telemetry item (30 CH, commutator).

CH	斑 目	CH	理 目
1	校正電圧	16-	コマントアンサットック
1 2	校正電圧	17	スペアチャネル
3	十12 V 出力范压#1	18	スペアチャネル
4	十12 V 出力位正#2	19	スペアチャネル
5	地池框框	20	電池電圧
6	電池電流	-2)	证他抵抗
7	ダンケ圧	22	タンク圧
8	PLL 1199	23	電他温度
9	□♥≥ F AGC	24	タンク温度
10	コマンドアンサバック	25	+5 V 出力電圧
11	コマンドアンサバック	26	+25 V 出力電圧
12	コマンドアンサバック	27	スペアチャネル
13	コマンドアンサバック	28	スペアチャネル
14	コマンドアンサバック	29	同期信号
15	コマンドアンサバック	30	同期信号

r: 地球を衛星から見た視半径(約9°)

d:南北地球 センサ の取付け角 (衛星赤道面に対し 6.5°)

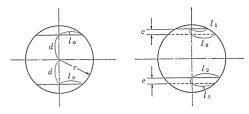
e:姿勢誤差

lo: e=0 のときの地球 センサ 出力 パルス 幅

4, 12:e+0 のときの地球 センサ 出力 バルス 幅

$$e = \frac{l_2^2 - l_1^2}{4d}$$

従ってこの装置では、南北地球センサのテレメータ信号のバルス幅を各々処理して角度に変換し、上記の演算を行なって姿勢誤差を検出する。なおこの角度への変換には、スピン 周期に比例した クロックを発生する周波数同期回路を用い、以後はディジタル 処理して、0.1°の精度で表示する。


(2) スピュ 率検出装置

これは衛星のパルス 幅を検出するもので、太陽センサ出力の テレメータ 信号の間隔を標準 クロック で カウント して計測し、パネル上に rpm 表示する。

5.3 コマンド送信部

コマンド系の地上装置は図 11. に示すとおり、符号発生パネル、コマンドエンコーダおよびコマンド送信機で構成される。

符号発生パネル上で押しポタンスイッチ により コマンド を選択し、スタートSW を押すと、エンコーダ において PCM (PRN)/FSK/AM のコマンド 信号を発生し、これで VHF の搬送波を AM 変調して アンテナよ

- (a) 姿勢誤差 0のとき
- (b) 姿勢誤差eのとき

図 10. 地球 センサ の出力 パルス 幅 Earth sensor pulse width.

図 11. コマッド 送信部 ブロック 図 Functional block diagram of command unit.

り送信する。ここで使用しているコマンド項目は以下のとおりである。

- # 1 スピンエーブル (自動で スピンジェット を ON にする)
- # 2 スピンディスエーブル (#1オフ)
- # 3 スピンアップ (手動で スピンジェット を ON にする)
- # 4 X軸姿勢 エーブル
- # 5 Y軸姿勢 エーブル
- # 6 姿勢 ディスエーブル (#4, #5 オフ)
- # 7 ①姿勢 スレーブ
- # 8 ⊖姿勢 スレーブ
- # 9 スレーブディスエーブル (#3, #7, #8 オフ)
- #10 ソレノイドディスエーブル (緊急時 ソレノイド 電源断)

#4, #5, #7, #8を適当に組み合わせて指令することにより,

4.4 節で述べた X ⊕, Y ⊕, X ⊝, Y ⊝ の モード を選択する。

5.4 電源制御部

本 ガスジェット 姿勢側御 システム を運用するにあたり、模擬衛星に積 載している パッテリを、 いちいち取りはずしをすることなく、 充・ 放電できることが必要となった。 また模擬衛星を実験のために スピン させるとき以外は、 節約のため パッテリ を使用せずに 外部 から電源を供給する必要があった。このように本システム のために衛星外部 に設けられる電源系は、射場における ブロックハウス 内のそれと同様な機能が要求される。 これらの要求機能を 満足するため、 標準 ラックの約2分の1の部分に、充電用電源、外部電源、 ならびに制御用パネルをもつ、電源制御部を製作した。

電源制御部には次の四つのモードがある。

- (a) 内部電源 t-- ド
- (b) 外部電源 モード
- (c) 充電 モード
- (d) 放電 モード

内部電源 モードは、衛星側面に取付けられた アンビリカルコネクタ に、ターンオンプラグ を付加することにより、衛星内蔵の バッテリ だけで、衛星内部のすべての電子機器類を作動させ、衛星を三軸空気軸受上で機械的に切り離して、衛星姿勢制御の実験を行なうためのものである。 外部電源 モードは アンビリカル コネクタ および ハードライン を通じて、衛星積載の コンバータ に外部電源から +25 V の直流を供給するものである。 充電 モード および放電 モード は アンビリカル コネクタ および ハードライン を通じて、衛星積載の バッテリ に外部電源または外部抵抗を接続し、充電または放電の動作を行なわせる。これらには充・放電量をモニタするための電量計が 直列にそう入されている。 また充電モードには、タイムリミットを示すための ブザーが用意されている。 以上の機

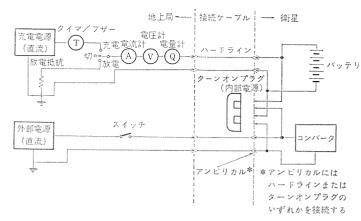


図 12. 電源 制御 系ブロック図 Functional block diagram of power supply control unit.

能を ブロック 図で示すと図 12. のようになる。

6. 支援装置

6.1 スペースクラフトシミュレータ

宇宙空間を飛ぶ飛行体の運動をシミュレートするために, 直径 15 cm の球形 ペアリング を空気圧によって浮上させ, 低摩擦の三軸運動を実現する。本装置は(株)島津製作所より購入したものであり, 構成および ペアリング 部の主要諸元は以下のとおりである。

構成

- (a) スピンテーブル
- (b) 球面 エアベアリング
- (c) クランプ 装置
- (d) 支柱および台
- (e) スピッ 駆動部
- (f) エアコンプレッサ
- (g) コントローラ
- ベアリング 部主要諸元 (i) 負荷容量 300 kg
- (ii) 軸受径 150 mm
- (iii) 動作圧力 0.6~6 kg/cm²
- (iv) 浮き上り量 25~30 μ
- (v) 摩擦 トルク 390×w mg・cm (w:回転速度 rad/s)
- (vi) 回転範囲 スピッ 軸 360°, ピッチロール 軸±30°

6.2 慣性能率測定装置

本システムの運用にあたって、衛星の慣性能率の値を知ることは本質的な意味をもつ。すなわち、姿勢制御は推進系の質量噴出に基づく力積の付与により、衛星の角運動量を変化させることを原理とするが、この角運動量は衛星の慣性能率と回転数の積であり、慣性能率は制御系の定数である。また衛星のスピン軸まわりと横軸まわりの慣性能率比は、安定性の立場から重要なので、その数値をあらかじめ知っていなければならない。

衛星のような複合体の慣性能率を手計算で求めるのは、はなはだ時間がかかり、繁雑な手続きを踏まなくてはならない。したがって計算機を用いて、衛星の部品、サブシステムを集中定数系になおして慣性能率の計算を行ない。おおよその見当をつけることができる。一方、衛星の慣性能率は、衛星を含む系の単振動実験により求めることができる。これには、つぎのような方法がある。

- (a) 一本つり法
- (b) 二本つり法
- (c) ばねによるよじり振動法

われわれは、計算機による方法と、単振動実験のうち二本つり法 の二つの方法により衛星の慣性能率を求めた。

計算機による方法は、質量特性解析 プログラム に必要な入力を与えて、慣性能率はじめ、静および動つりあいを計算するものであるが、入力質点数を約600としたとき、実験データの平均と I % 程度の誤差範囲で慣性能率を計算することができた。

二本つり法による慣性能率の測定は、中心垂直軸まわりに静つり あいをとった後、小さなよじり振動をさせ、その周期を光学系と カ ウンタ により測定する。衛星をつけた状態とつけない状態のおのおの の周期から慣性能率を計算した。

計算の結果を表 4. に示す。 各測定ごとの結果のばらつきは $2\sim5$ %程度であった。

6.3 静つりあい 推力測定装置

地上で人工衛星の シミュレーション を行なう時、模擬衛星の動つりあいおよび 静つりあいをとることは 重要な問題である。本 ガスジェット姿勢制御 システム では、 差動 トランス を利用して 微少変位を電気的に 増幅することにより、衛星の微少な不つり合いを検出する装置を開発した。本装置は、同時に、衛星に取付けた姿勢制御用および スピンアップ 用の スラスタ の静推力も測定することができる。

図 13. に装置作動 ブロック 図を示す。

検出器内の差動トランスの鉄心を、衛星の質量中心を通る平面上で 衛星本体に取付ける。この時、鉄心自身の重量によって発生する重 心まわりのトルクは、反対側に パランサ をつけて相殺しておく。

静星に静不つりあいが残っている場合,あるいはスラスタを噴射した場合には重心まわりにトルクが発生し、差動トランスの中の鉄心に変位が起こる。サーボ回路の働きでこの変位を修正する方向にフィードバックコイルに電流が流れるので、このフィードバック電流を測定することによって静不つりあい、あるいはスラスタの推力によるトルクを知ることができる。検出器内部には差動トランスが3個あり、1個は衛星のスピン方向のトルク、残りの2個は測定位置と衛星質量中心を結ぶ軸のまわりのトルクを検出する。1gの荷重に対するフィードバック電流は1mA、測定精度は50mg-cmである。

6.4 動つりあい測定

スピン衛星は一般に幾何学的中心軸すなわちスピン軸と最大主慣性主軸が一致するように設計される。これは衛星内のエネルギー消散作用により、衛星が最大主慣性主軸まわりにスピンしようとするからである。したがって、衛星内の機器配置設計の段階で質量特性プログラムを用いて、スピン軸と最大主慣性主軸が一致するようにする操作、いわゆる動つりあわせを行なう。衛星の最終的で精な動つりあわせは、衛星が全部組み立てられた後に、動つりあい試験機を用いて衛星を回転させ、遠心力にもとづく不つりあい量を検出して、対応する位置にバランスウエイトを付加することにより行なわれる。

このようにわれわれは、衛星の動つりあいを測定し、動つりあわせをするにあたり、計算機による方法と、試験機によって実験的に求める方法の二つをうまく使いわけた。

計算機による方法は、質量特性解析 プログラム に各質点の重心の座標と重量とを入力して動つりあいを求めるものである。ただし、重心が図心と一致しているとし、各質点の慣性能率を簡単な図形近似より計算しているので、ある程度の誤差はでる。たとえば動つりあ

表 4. 二本つり法による慣性能率の計算結果(平均) Satellite moment of inertia.

Iな(スピン軸)	1.046 kg-m-sec ²
Iξ(微軸)	0.768 kg-m-sec ²
Iη (橫軸)	0.756 kg-m-sec²
MOIR	1.37
1	i .

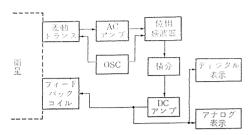


図 13. 静つりあい 推力測定装置 ブロック 図 Functional block diagram of static unbalance meter.

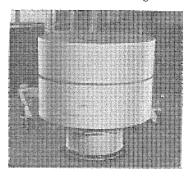


図 14. 動つりあいの測定 Measurement of dynamic unbalance.

い試験機によって偶不つりあい 13 kg-cm² 以下に動つりあわせした衛星の、計算機によって計算した偶不つりあい量は、約880 kg-cm² であった。しかしこの プロクラム は設計を進めるにあたって非常に有用であった。

実験を通じて動つりあい測定をする方法は,当社所有の明石製たて形動つりあい試験機を用いて行なった。試験の様子を図 14. に示す。

動つりあい測定の準備作業として、測定装置の電気的なつりあわせのための零補償、不つりあい量の衛星上・下二修正面への分離、不つりあいおもりによる目盛合わせ等を行なった後、衛星の上下修正面上での不つりあい量を測定し、対応する場所に バランスウェイト を取付ける。このような操作を数回行なうと、衛星を所期の範囲内に動つりあわせすることができる。

動つりあい試験の結果を表 5. に示す。

6.5 姿勢角, スピン率検出装置

本システムの試験において、制御の定量的なデータをうるために欠かすことのできないのが本装置である。 軌道上の 衛星はそのセンサ系、制御系および推進系, ならびに地上局の機器により姿勢が決定され、制御されるが、その制御精度は テレメトリデータ から推定する以外は一般に明らかでない。 本システム は ハードウエア による衛星の自由空間における姿勢挙動の模擬実験設備であるので、本装置を用いれば、これらの衛星に固有の制御精度が明確になる。 したがって本装置の精度はセンサ系のそれに比べて一けた程度 よくなければならない。

そこで姿勢角検出装置は 0.2° の精度で姿勢角を計測できる 機 構 のものを開発した。

図 15. に示すように 衛星の回転中心と一 致する点に 中心をもつ 円弧上の板に 0.2° の間隔で太陽電池をはりつけた受光器を 2 個,90° 離して設置する。これを衛星の重心面上に水平におかれた赤外線投

表 5. 動つりあい測定 データ Satellite dynamic unbalance.

回			転			数	180 rpm
上	75	修	Æ	面	[8]	77	600 m m
游	不	つ	b	あ	Va.	撒	6 kg-cm 以下
動	不	つ	b	あ	b	盘	13 kg-cm ² 以下

図 15. 姿勢角 検出装置 Attitude measurement equipment.

図 16. 姿勢角検出 エレクトロニクス ブロック 図 Attitude measurement electronics functional block diagram.

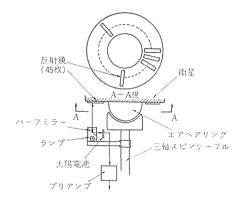


図 17. スピッ 率検出装置 Spin rate measurement equipment.



図 18. スピッ 率検出 エレクトロニクス ブロック 図 Spin rate measurement electronics functional block diagram.

光器により走査し、IR 光が通過した太陽電池を識別し、信号処理した後、姿勢角としてディジタル および アナログ 表示するようになっている。姿勢角検出 エレクトロニクス の ブロック 図を図 16. に示す。

IR 受光器は 2 × 5 mm の太陽電池で、衛星の投光器から発射された発光 ダイオードの 10 kHz に振幅変調された信号を受ける。 ゲート 制御回路により、FET アナログスイッチの ゲート 回路を ON-OFF し、対応する変調信号が存在すれば、増幅度 60 dB の フィルタ・アップ を通過し、角度検出回路に到達する。 ここで信号の有無に応じて ゲート 制御回路を走査するかどうかを決める。角度検出回路が IR 光に ロックオン すれば、対応する ディジタル および アナログ 表示回路を駆動して表示装置を動作させる。

つぎに スピン 率検出装置は 0.1 rpm の精度で スピン率を計測できる機構のものを開発した。

図 17. に示すように衛星のエアペアリングの外周に、45 枚の反射鏡をはりつけ、衛星の姿勢に関係なく光を乱反射するようになっている。三軸空気軸受支持部に固定したランプの光を、衛星回転数に応じたパルス幅の反射光として反射鏡で反射し、ハーフミラーを経て太陽電池に到達する。この信号をプリアンプを通じて増幅した後、ディジタルFLL に導びく。このディジタルFLL は衛星1回転によって得られる45 個のパルス列を600 個のパルス列にてい倍する回路で、このパルス列を10分の1 秒間計数することにより、表示回路に衛星のスピン数を0.1 rpm の精度で表示することができる。

図 18. に スピッ 数検出 エレクトロニクス の ブロック 図を示す。

これらの姿勢角および スピッ数は ペンレコーダ に記録することができ, 姿勢制御系 スピッ 率制御系 および 受動形 ニューテーションダンパ の定量的 な評価を行なうことができる。

7. む す び

以上, 静止衛星の姿勢制御試験のための装置を, 模擬衛星, 地上 局および支援装置にわけて解説した。

本文からもわかるとおり、衛星という1個の ハードウェア を運用動作させるためには多くの分野にわたった作業が必要となる。本試験装置は地上における機能試験用であるため、宇宙環境での使用に耐える設計とはなっていない。宇宙環境において使用する衛星については部品レベルから高信頼度の要求があり、試験に関してもさらに、

- (1) 太陽放射と宇宙空間というきびしい熱環境にさらされても, 動作を遂行することのできることを確認する熱真空試験および模擬 太陽光照射試験
- (2) 打上げ時に ロケットより加えられる 振動・加速度・衝撃・音響によって不具合の発生しないことを確認する各種試験を、部品レベル、コーポーネントレベル、サブシステムレベル、システムレベルについて行なわなければならない。

これらの要求はいずれも本実験の目的をこえたものであり、また 多額の費用を要するので本実験装置には適用されていない。

現在わが国においては、本装置と同程度のものは宇宙開発事業団 筑波宇宙 センター と、 東京大学 宇宙航空研究所に設置されているの みであり、今後の衛星技術の開発に大いに力を発揮することが期待 される。

次稿においては現在進行中の各種特性試験やソフトウェアシミュレーションとの比較などをまとめて発表する予定である。 本試験装置の開発にあたり, あらゆる面において中研 機械第Ⅱグループ の方々のお世話になった。また慣性能率の測定については, 宇宙開発事業団 小平分室の方々の御指導をいただいた。併せて感謝の意を表する次第である。

参考文献

- (1) A. V. Balakrishnan: Space Communications, (1963) McGraw-Hill Book Co.
- (2) N. E. Feldman: Communication Satellites for the 70's, (1971) The MIT press.
- (3) 芳野ほか:静止衛星姿勢制御試験, 第16回 宇宙科学技術連 合講演会(昭47-11)

M 345 M 形カラーキャラクタディスプレイ装置

小畑 甫*・伊藤 均*・小林啓二* 山崎 英蔵**・山本 正勝*

Type M 345 M Color Character Display System

Kamakura Works Hajime Obata • Hitoshi İtô • Keiji Kobayashi
Eizo Yamazaki • Masakatsu Yamamoto

We have developed type M 345 M color character display system. This is of a multi station type which enables the terminal system to be turned to furnishing with intelligence.

This device employs a mini-computor at its control section, and by using its program it not only processes the data of the terminal system but also controlles multi stations of the display system, thus having flexibility adaptable to every system.

This article introduces the outlines of this device built for trial.

1. まえがき

計算機と人間とのコミュニケーション 手段として開発された キャラクタディスプレイは、従来この種の用途に多用されていた キーボードブリンタ に比較して、データ の高速処理、無騒音、高信頼度、更に データ の編集機能という人間 オリエンティド な機能に秀れており、より円滑な コミュニケーション 手段としてその占める位置はますます人きくなりつつある。

当社においては既に、一つの建物内とか工場内で多くの人が同時に計算機を利用できる マルチスティション 形の C 231 形および C 232 形カラーキャラクタディスプレイ 装置、 遠隔地から通信回線を経由して計算機を利用する スタンドアロン形の M 340 形、M 345 形および M 395 形カラーキャラクタディスプレイ 装置を開発し、製作している。

しかし、計算機とデータ通信の融合は、オンラインシステム、タイムシャリングシステムと様々なデータ処理システムを生み、第4世代の計算機システムはコミュニケーションオリエンティドになるといわれている昨今、遠隔地にある一つの建物内とか工場内の多くの人が同時に遠くにある計算機を通信回線を経由して利用するシステムが出現している。この様なシステムに適合する端末装置としては、システム 効率の観点より、

- (1) 計算機の有効利用を計るため、実際に計算機が処理可能な情報のみを、必要量だけ、通信回線経由で計算機と情報交換する必要がある。
- (2) 通信回線が ダウン した場合、システムダメッジ を最少とするため の処置を施す必要がある。

等の要求を満たす必要があり、端末側にある程度の処理機能を要求 するいわゆる端末の インテリジェンス 化の方向にある。更に、端末の使 用法は多様化を避けられず、これに対処することも必要とされる。

この様な新たな要求にもとづく。キャラクタディスプレイオリエンティトな端末システムを容易に実現可能な装置として、マルチステイション形のM345 M形カラーキャラクタディスプレイ装置を開発した。以下にその概要を紹介する。

2. M 345 M 形ディスプレイ装置の概要

今回開発した M 345 M 形 カラーキャラクタディスプレイ 装置は、 これを ベース に各種の端末 システム を構成できる。図 1、は、センタ への データ エントリ、データファイル の更新、 情報検索等を主業務とする オンラインシス

テムにおける端末システムの一例であり、ディスク装置および ブリンタ装置を組み込むことで端末側で可能な処理は 端末制御装置である ミニコン で処理をする。即ち、オンライン、オフライン時における装置間のデータ 転送および フォーマット 制御等のデータ 処理はもちろん、回線 ダウンによる オフライン時にディスプレイ装置からの入力データ をディスク装置に貯えておき、回線復帰時に センタにまとめて送出する機能がこの端末システム の大きな特長となっている。

この例からわかるごとく、端末の インテリジェンス を大きく且つその フレキシビリティが要求される場合、端末に ミニコン を持つ端末 システム は 今後 ミニコン の価格低減と共に増加するであろう。

本 M 345 M 形 カラーキャクタディスプレイ 装置はこの点に着目し、ミニコン を端末 インテリジェンス 化にのみ使用するのでなく、ディスプレイ 装置の 制御部としても利用することで端末 システム の低廉化および ディスプレ

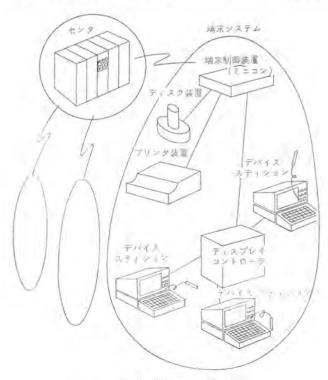


図 1. 端末 システム 例 An example of terminal system,

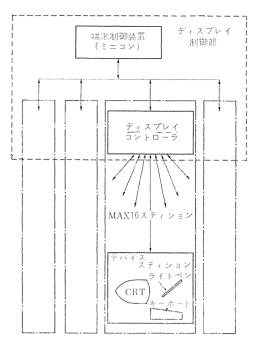


図 2. M 345 M 形 カラーキャラクタ ディスプレイ の構成図 Block diagram of M 345 M color character display system.

イ装置の フレキシビリティを実現した装置である。従って,M 345 M 形カラーディスプレイ 装置は図 2. に示すごとく,制御部として端末制御装置(ミニコン)と ディスプレイコントローラがあり,この両者が一体になってディスプレイ 装置の各種機能を制御している。 人間との直接的な インタフェイス はデバイス ステイション 部で,1台のコントローラに最大16デバイスステイション が同軸線で接続される。

端末制御装置と ディスプレイコントローラ の機能分担を概観すると,

(1) 端末制御装置

ディスプレイ 装置における端末制御装置の役割は、 キーボード 又は センタ からの入力 データを解読し、これに従った リフレッシュメモリ の内容更新および カーソル 移動等を プログラム により制御する。

(2) ディスプレイコントローラ

リフレッシュメモリ の内容を デバイス ステイション の CRT に可視像として表示すると同時に、デバイス ステイション からの入力 データ (キーボード 又はライトペン)、ディスプレイ コントローラ の状態情報 および 端末制御装置がその機能を遂行するに必要な情報 (カーソル 位置、リフレッシュ メモリアドレス等) 等の保持をする。

となる。ワイヤードロジックで制御している部分は 表示機能のみで 他は プログラム 制御であるため、従来の ワイヤードロジック 制御のみによる ディスプレイ 装置より、 より フレキシビリティ に富んだ ディスプレイ 装置を実現している。 今回試作した M 345 M 形 カラーキャラクタディスプレイ 装置の仕様は、スタンドアロン 形の M 345 形 カラーキャラクタディスプレイ 装置に準拠させ表 1. のとおりであるが、 表示機能を除く他の機能は用途によって変更することができる。図 3. に M 345 M 形 カラーキャラクタディスプレイ 装置の外観を示す。

3. ディスプレイ コントローラ

最大 16 デバイス ステイション の表示制御と各種情報の バッファリング がその主要機能であるが、構成上から ミニコン との情報転送制御および デバイス ステイション との情報転送制御等の機能が ディスプレイ 装置と して必要となる。

コントローラの構成を ロジカル に分類すると図 4. のごとくになり、大別して基本制御部と ステイション 制御部に分かれる。 基本制御部では

表 1. M 345 M 形 カラーキャラクタ ディスプレイ の仕様 Specification of M 345 M color character display system.

	, , ,
表示仕様	
使用CRT	14″高分解能カラーブラウン管
表示フォーマット	80 字×25 行 (2,000 字/画面)
表示 面積	橫 250 mm×綴 150 mm
文字の大きさ	橫 2.6 mm×綴 3.8 mm
表 示 文 字 租	英数字 (36), カナ (46), 記号 (32) 計 114 字種
文 字 表示方式	ラスタスキャンによるドットマトリックス(9×7)方式
表 示 色	赤,緑,白の3色
輝 度 制 御	点滅(ブリンク)可能,無表示指定可能
けい (郢) 線 表 示	任意の情報をけい線でわく(枠)取り可能
フォーマット制御	
画面分割(スプリッ	トスクリーン)
プロテクト/アンブロ	ロテクトフィールド
数字入力フィールド	
ライトペン ディテク	タブル/ライトペン ディテクティッド フィールド
タブセット	
色指定	
ブリンク指定	
カーソル制御	
ホーム	
ラインフィード キャ	リッジリターン
タビング	
アンプロテクトサージ	ý -
スキャンアップ/ダリ	ウン/ライト/レフト
編集機能	
ディスプレイ クリア	
ディスプレイ イレイ	ズ
フィールド イレイズ	
デリート イン ライン	,
インサート イン ディ	スプレイ
ライン デリート	
ライン インサート	

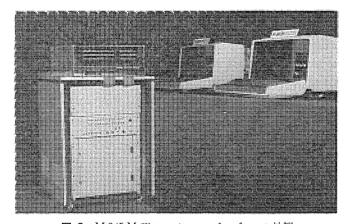


図 3. M 345 M 形 カラーキャラクタ ディスプレイ の外観 M 345 M color character display system.

ミニコンとの情報転送制御,ステイション間に共有され得る情報のバッファリングおよび各種タイミング信号発生機能があり,ステイションの接続数に無関係にコントローラに1式あればよい部分である。一方,ステイション制御部は各ステイションごとに1式必要な部分であり,各々表示制御およびステイションごとに特有な情報のバッファリング機能を有している。

3.1 チャネル制御口ジック

チャネル制御ロジックは、ミニコンとディスプレイコントローラ間の情報転送に関する制御を司る。ミニコンには DMA チャネルと プログラムチャネルの両者と接続しており、コモンレジスタまたは ステイションレジスタ に含まれる 1 レジスタ と、ミニコンが プログラムチャネル 経由で情報交換を行なう プログラムチャネル 転送モードと、リフレッシュメモリと ミニコンが DMA チャネル 経由で情報交換を 行なう DMA チャネル 転送モードにおいては 大量の且つ連続した情報を連続的に送受する機能を有しており、ミニコン 及び リフレッシュメモリの メモリサイクル を考慮

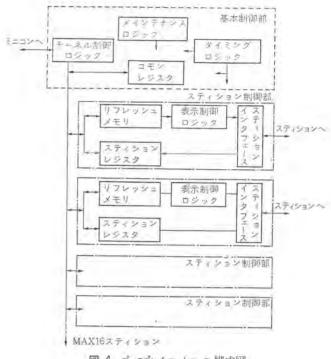


図 4. ディスプレイ コントローラ 構成図 Block diagram of display controller.

に入れて、約300~500 kHz の転送 レイト を可能にしている。

3.2 リフレッシュメモリ

各 ステイション どとに用意されており、 キャラクタコード 8 ビット に プロテクトビット (プログラム で任意の意味付け可能な ビット で試作機では オペレータ による消去、書き換えを禁止することを意味する ビット として使用した。)を付加した キャラクタ 当り 9 ビット の 2,000 キャラクタ 分の RA M で構成されており、CRT 画面上の キャラクタ ポジション と メモリアドレス が 1 対 1 対応している。

各 リフレッシュメモリ は,各 デバイスステイションの CRT 画面上に表示さるべき キャラクタコード を保持する部分で,タイミングロジック からの表示の ための タイミング 信号に応じて順次 キャラクタコード を読み出す動作と,表示時間以外の時間に チャネル 制御 ロジック を経由して ミニコン より送られてきた データ(キャラクタコード)を書き込んだり, ミニコン へ送出すべき キャラクタコード の読み出しをする動作がある。

3.3 表示制御ロジック

タイミング 回路からの リフレッシュタイミング (表示用の タイミング 信号) でリフレッシュメモリ より読み出された キャラクタコード は、表示制御 ロジック 内の文字 パターン 発生器によって コード に対応した文字 パターン を発生させる。 文字 パターン 発生器は 1 文字を 9 × 7 の マトリックスパターン で表現する ICROM を使用している。 更に表示制御 ロジックでは順次 リフレッシュメモリ より送られてくる キャラクタコード の中から色指定, ブリンク指定, 無表示指定, けい(野)線表示指定等の キャラクタコード を識別してそれぞれの指定に従った表示制御を行なっている。その他, スティションレジスタ中の カーソルアドレス を参照して カーツル の表示信号を発生させたり, ライトペン 起動信号をライトペン より受けて フルビデオ 信号を発生させたり, CRT に内蔵されている ランブ および警報の点滅, 鳴動信号を発生させている。

3.4 ステイションインタフェース

M 345 M 形 カラーキャラクタディスプレイ 装置においては、ディスプレイコントローラ と デバイス ステイション の間を同軸線で 接続している。 表示のための ビデオ 信号はもちろん、同期信号、ランプ 警報類の信号を単一同

軸線でシリアル化デバイスステイションへ送出すると同時に、デバイスステイションからの入力データおよび状態情報等もすべて同一信号線でディスプレイコントローラに送られる。

このため、ステイションインタフェースでは、デバイスステイションへ送出する信号を合成して同軸線に乗せる機能と、同軸線上の信号の中からデバイスステイションで発生した信号を選択的に取り出す機能を持っている。

3.5 レジスタ類

チャネル制御ロジック、リフレッシュメモリ、表示制御ロジック および ステイションインタフェース が動作中に参照すべき情報を保持する レジスタ および カウンタ 並びに ステイション インタフェース 経由で入力される キーボード入力 データ、ライトペン 位置情報、コントローラ および ステイション の状態情報等を バッファリング する レジスタ があり、チャネル 制御ロジック を経由して ミニコンと情報交換が可能である。 とれらの レジスタ又 は カウンタ は コントローラに一つあればよいものと、ステイション 対応に必要なものがあり、前者を コモンレジスタ、後者を ステイション レジスタ として表2. に分類する。

3.6 タイミングロジック

タイミングロジック では、約 19 MHz の水晶発振器から リフレッシュメモリ、表示制御 ロジック への タイミング を始めすべての ロジック に必要な タイミング 信号を発生させている。

3.7 メインテナンス ロジック

ディスプレイコントローラを調整する場合の各種信号を発生するロジックである。

4. デバイスステイション

デバイスステイション は、ディスプレイコントローラから 離れた場所に同軸線 を経由して 酸置することができる 人間との 直接的な インタフェース 部分であり、ステイション ロジック および CRT を標準装備している。 オブション として キーボード および ライトペン を付加することができる。

4.1 ステイションロジック

先に述べた ステイション インタフェース と対になって動作するもので、 ステイション 側における信号の合成及び分離を制御する回路である。

4. 2 CRT

表示制御 ロジック で発生した表示信号を人間への可視像として カラー 表示する カラーテレビモニタで、横 80 文字、縦 25 行の フォーマット で総表示容量 2,000 文字の表示が可能である。又、このモニタには数種の表示 ランプ、スイッチ および警報が内蔵されており プログラム で制御可能

表 2. レジスタ 一覧表 List of registeres.

コア メモリ アドレス カウンタ	ミニコンのデータアドレスを示す
データ レングス カウンタ	DMA 転送のデータ量を示す
リフレッシュメモリ アドレスカウンタ	リフレッシュメモリのデータアドレスを 示す
コントロール ステイタス レジスタ	コントローラ, ステイションの状態情報
デバイス ステイション アドレス レジスタ	ステイションを指示するレジスタ
ステイションに一つ必要なレジスタ	
キーボード インタラブト レジスタ	キーボード IT をベンディングする
ライトペッインタラブト レジスタ	タイトベン IT をベンディングする
エラーインタラブト レジスタ	エラー IT をベンディングする
カーソル アドレス カウンタ	カーソル アドレスを示す
キーボード レジスタ	キーボード入力コード及びライトペン位
	置情報をパッファリングする
インディケイション レジスタ	ランプ制御用
コントロール オーダ レジスタ	若干のハード機能を指示する

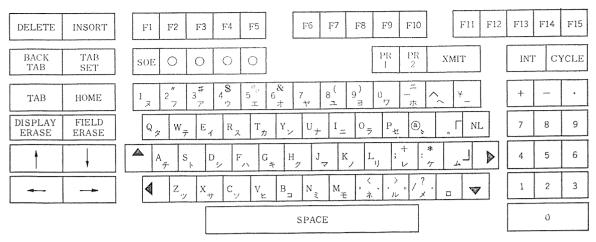


図 5. スタンダード キーボード Standerd keyboard.

である。

4.3 キーボード

オペレータの意思を伝達する手段としてのキーボードがオプション 接続可能である。 図 5. にそのキー 配列を示した スタンダードキーボード の他にファンクションキー のみを持つ ファンクションキーボード があり、キーボード 上のキー をオペレータ が押し下げることで、これに対応した 8 ビットのキャラクタコード が発生する。

+-ボードで発生した ++ラクラコードは ディスプレイ コットローラ を経由して ミニコッ に送られ,ここで解読される。

4.4 ライトペン

オペレータ入力機器として今一つライトペンをオプション接続することができる。ペン状の本装置は、CRT画面上の任意の位置を指示することで、その位置情報をディスプレイコントローラ経由でミニコンに送出される。その運用はプログラムにゆだねられておりシステムによって様々な意味に設定可能である。

5. ディスプレイ処理プログラム

ディスプレイ処理 プログラム は、端末制御装置としてのミニコン 内に ストァ されて おり、ディスプレイコントローラ と共動して ディスプレイ 装置の制御を司る。端末制御装置に用意されるべき プログラム および構成は、端末 システム としての ハードウェア 構成および用途等によって種々変化がある。図 6. に某社の端末 システム 用として開発された プログラム 構成を示すが、このプログラム 例の内 ディスプレイ に直接関連する プログラムとして、オペレータの キーボード、ライトペン 操作により起動がかかる キーボード 処理 プログラム と、センタ から回線経由で起動がかかる 受信 データ処理 プログラム に関して概略説明する。ディスプレイ装置としての動作フローを図 7. に示す。

5.1 キーボード処理プログラム

割り込みによって起動され、キャラクタコード、カーソルアドレス および ステイションアドレス を読み込み、各キャラクタコード に対応した次の処理を行

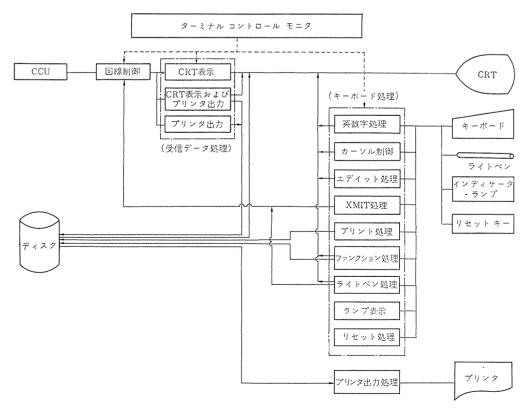


図 6. 端末 ソフトウェア の構成図 Block diagram of terminal software.

なう。

(1) 英数字処理

入力された英数字コードをリフレッシュメモリのカーソル 位置にそう入する。 その際 カーソル 位置を有へ 1 けた進める。

(2) カーソル 制御

入力されたカーソル制御用キャラクタコード(ホーム、キャリッジリターン等) に対応したカーソル位置の移動を行なう。

(3) 編集処理

入力された編集制御用 キャラクタコード に対応した編集処理を リフレッシュメモリ に行なう。カーソル 移動もあわせて行なう。

(4) トランスミット 処理

XMIT キャラクタコード 検知により。 リフレッシュメモリデータ のうち SOE キャラクタコード から カーソル 位置までの データ を送信 イメージ に変換して、

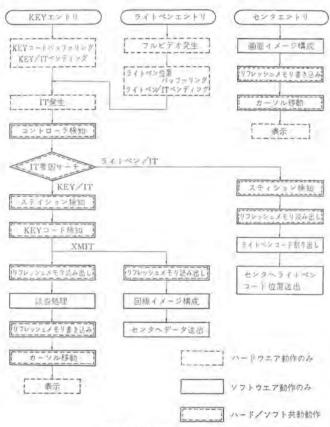


図 7. 動作フローの概略 Flow chart of display control.

回線制御 プログラム に送信要求を出す。

(5) ブリット 処理

ブリット 要求 キャラクタコード の検知により、リフレッシュメモリデータ のうち SOE キャラクタコード から カーソル 位置までの データ を ブリットイメージ に変換して、各 ブリッタ に関り 当られた ディスクバッファ に書き込み、ブリッタ 田力処理 ブログラム に ブリット 要求を出す。

(6) ファンクション 処理

入力された ファンクションコード に対応した表示をし、更にとれに対応 した フォーマット 画面を ディスクから読み出して リフレッシュメモリ に書き 込む。

(7) ライトペン 処理

割り込みコードが ライトペンのとき、ライトペンディテクタブルキャラクタコード、 ライトペンディテクティッドコード に (ライトペンディテクティドコード は、ライトペンディテクタブルコード に)変換し、その位置情報を割り出し回線制御プログラムに送信要求を出す。

(8) インディケータランプ 表示

デバイス ステイション の状態変化に応じ各種 インディケータランプ (LOCK, REC, XMIT, ERROR, INT ランプ) の点灯及び消灯を行なう。

(9) リセット 処理

リセットスイッチ (LOCK, INT, ERROT, RESET スイッチ) に対応した状態にリセットする。

5.2 受信データ処理プログラム

回線制御 ブログラム により起動され、センタ より受信した データ を指示された装置に出力する。ディスプレイ が指示された場合には、受信データ を表示 イメージ に変換して リフレッシュメモリ に書き込む。

6. ま; す び

以上, M 345 M 形 カラーキャラクタディスプレイ 装置の概要を述べた。

本装置は、ディスプレイの用途の多様化、端末の複合 システム 化に対 処するために開発された インテリジェント ディスプレイ システム であり、用途 は広いと思われる。

参考文献

- (1) 山崎: ソフトウエア 科学, No. 11 (昭 45)
- (2) 大川: ソフトウェア 科学, No. 2 (昭 46)
- (3) 大川, 渡辺: 画像技術, 2, No. 3, 69 (昭 46)
- (4) 大川ほか: 三菱電機技報, 45, No. 12 (昭 46)
- (5) 大川ほか:三菱電機技報, 46, No. 2, 190 (昭 47)
- (6) 大川ほか: 三菱電機技報, 47, No. 8, 897 (昭 48)

固定ヘッド型 磁気ディスク記憶装置

渋谷博史*・東山 昇*・橋本壽夫* 佐々木 勝*・岸 洋*

Fixed Head Magnetic Disk Memory Device

Kamakura Works

Hiroshi Shibuya • Noboru Higashiyama • Toshio Hashimoto Masaru Sasaki • Hiroshi Kishi

With the progress of electronic computors, the fixed head magnetic disk memory device as a random access memory that is a part of the periphery devices has evidenced remarkable innovation of technique. On the part of Mitsubishi several kinds of fixed head magnetic disk memory devices have been developed and produced for the present, while new types, M 814 and M 824, of high bit density, high capacity and high reliability have been developed and put into practical use for MELCOM-80 and MELCOM-70.

This article describes the outlines of these new types and technical problems posed in their development.

1. まえがき

事務用小形電算機、 ミニコン の普及とともに、 その補助 メモリ として、大容量 ランダム アクセスメモリ の需要は増加しつつある。

当社では、これまで MELCOM-80 シリーズの内部、外部メモリをはじめとして、MELCOM-70 用、OEM ベースの外販用などに各種固定へッド型 磁気 ディスク 装置を開発し、約5 千台の生産実績をもっている。今回さらに高 ビット密度、大容量、高信頼性を計った新機種 M 814、M 824 を開発した。ここでは、固定ヘッド型 磁気 ディスク 装置の構成、内容について概説し、併せて高 ビット密度を実現するための磁気円板の面精度の向上、磁性めっき技術の改良、および磁気 ヘッドの開発、さらに記録方式の検討、周辺回路の改良等について述べる。

2. 固定ヘッド型磁気ディスク装置

固定 ヘッド型 磁気 ディスク 装置の外観を図 2. に示した。以下この装置の構成部分について説明する。

2.1 磁気ヘッド

この装置の磁気 ヘッドは、トラック ごとに ヘッドを有し、5 個の ヘッドを一つの スライタ にまとめた マルチチャネル 型である。

スライダは、ティスクが回転すると空気の流れで生ずる粘性により浮上する。スライダ面には浮動力を得るための浮動面がある。 また、ス

ライダ は リッ 青銅の支持ばねで ヘッド 取付板に支持されており、支持 ばねには加圧調整機構があって、スライダ の受ける浮動力に均衡した 加圧力を スライダ に加えることができる。ディスク が定 速回転に達する と、スライダ は ディスク と 2~3 ミクロン の エアギャップ を 保って安定に浮動する。ヘッドの自重は、約3 グラムで、浮動面は、 浮動しやすいよう に精密加工が施されている。 磁気 ヘッド の コア は 機械的耐摩耗性に富み、高周波領域において導磁率の高い多結晶 フェライトを用いている。

2.2 磁気円板

磁気円板の素材は、黄銅板で、荒加工、超精密切削、ラップ等の工程を経てそれぞれ直径 205 mm、305 mm、厚さ3 mm、5 mm等の鏡面仕上げが施されている。 これに各種下地めっき工程を経て Co-P 系磁性めっきを行い、さらにそのうえに 硬質 20ムの保護めっきがしてある。保護めっきは十分な硬度をもち耐膨耗性に優れ、また磁気円板の面粗さのほか、ランアウト、平面度も厳格に管理されているので、磁気へッドは、磁気円板によく追従し、相対 ギャップを一定に保持できる。

2.3 駆動回路

との装置の磁気 へッドは、コンタクトスタート方式を採用している。起動・停止時の低速回転中は、磁気円板に へッドが接触しているので、駆動回路は、モータを短時間で一定回転数まで駆動すること、停止時には直流電圧を加えて、モータに ブレーキ 電流を流し、ヘッドと磁気円板の接触時間を短縮する機能を持っている。この機能は ディスクの長寿命化と密着している。

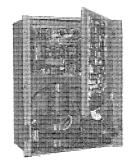


図 1. M 814 固定 ヘッド 型磁気 ディスク 装置 M 814 fixed head magnetic disk device.

図 2. 磁気 ヘッド Magnetic head.

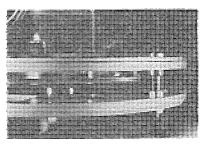


図 3. 磁気 ヘッドの浮動 Floating of the magnetic head.

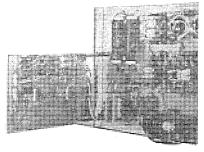
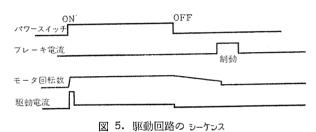


図 4. 駆動回路 Driving circuit.

3. M 814, M 824 の仕様

本体,駆動回路の仕様をそれぞれ表 1, 2 に示す。との磁気 \vec{r} - \vec{r} - \vec{r} - \vec{r} 装置は、駆動 \vec{r} - \vec{r}


表 1. 仕様 (M 814, M 824) Specifications (M 814, M 824)

項目	型	žζ	M 814	M 824
	外形寸法径	mm mm	256 φ 260	354 φ 245
装 置	面は	kg		
磁気円板	円 板 円 板 直 径	面/枚 mm	2/l 205 φ	2/l 305 φ
MA XI II DA	トラック数	個/枚	64	64
磁 気 ヘッド	マルチ ヘッド (インダクタンス 書 き込み 電流	コア数) ルH mA	5 100±10 190±10(%)	5 100±10 190±10(%)
性 能	読み出し電圧 分 解 能 振 福 変 調 S/N	mV % %	5以上 50以上 70以上 5	5 以上 50 以上 70 以上 5
記 憶 容 量	装 置 容 量 トラック容量	ピット ビット	1,065,600 16,650	2,128,000 33,250
記憶密度	ビット 密 度 トラック密度	BPI TPI	1,430 20	1,460 20
アクセスタイム	最 大 平 均 回 転 数	ms ms rpm	20 10 3,000	40 20 1,500
データ転送速度	k ビ	ット/砂	870	870
電源条件	AC 100 V±10 % DC+5 V±5 %, DC+24 V±10 % DC-12 V±10 %	, 0.5 A		
環 境 条 件	温 度 度	°C % G	5~40 40~90 10:0.5G以下 5	5~40 40~90 10:0.5G以下 5

を配置したもので、各へッドは、磁気 ディスク 装置に内蔵された へッド 選択 マトリクス ダイオード、リードアンプ、ライトアンプ を経て、コネクタ に接続 されている。又、駆動回路は、図 5. に示されるような タイムシーケンス により、モータ を起動、停止する。

表 2. 仕様 (駆動回路) Specifications (driving circuit).

The second second				型式	M 81	4	M 824	
項	El							
Æ	源		AC 100	V±10%				
			(無	停電)				
			AC 100	V±10 %				
			(スイッチ	経由)				
起	動	時	[8]	砂	5 LJ	ド	5以下	
pp	ıl:	膊	[B]	砂	25 以	下	25 以下	
起	動	電	流	A	10以	下	15以下	
走	行	Æ	流	A	1.5 🛭	下	2.5 以下	
起弧	ע ב נ	デ	ン サ	μF	160 V	100	160 V 100	
走行	:コン	・デ	ンサ	μF	200 V	7	200 V 20	

Sequence of drive circuit.

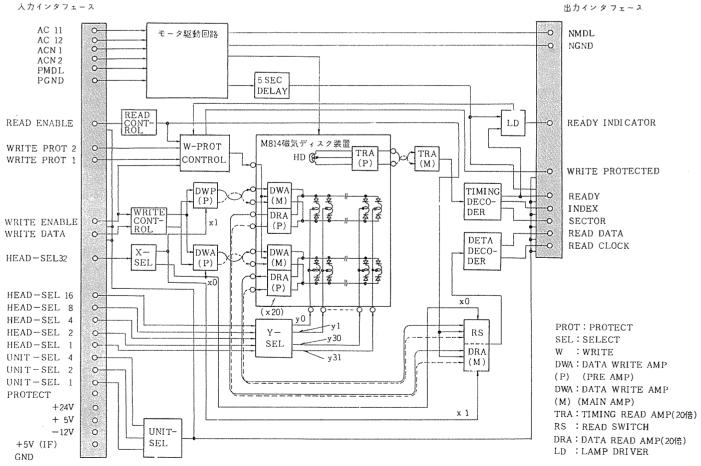
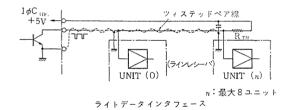
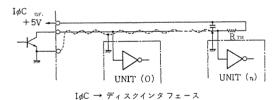
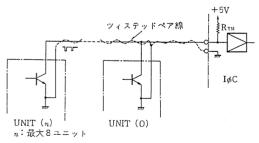


図 6. 入出力と インタフェース Input output and interface.


4. 入出力とインタフェース


図 6. に周辺回路装置の構成図を示す。


4.1 電源, アース線

後者については、平編銅線を使用して耐雑音特性を向上させ、また交流アース系と、直流またはきょう体アース系を分離して、大地帰路一点接地としている。 大地帰路の枝分れルーラを流れる 電流の誘導によって電磁誘導を引き起すから、アースケーブル はインピーダンス を小さくするために導電性の良い太いものを使うほうが良好である。信号系では、タイミング系と データ 系との結束をさけ、 データ 系の入力は ツイストペア 線を、リードデータ、タイミングリード 系は、シールド 線を使用している。 また耐雑音特性向上の ため、ディスク 本体と周辺回路のアースを平編銅線で接続すると顕著な効果がある。

4.2 ラインドライバ/ラインレシーバ

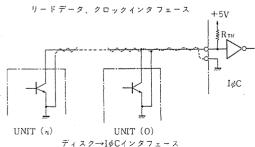


図 7. ラインドライバ/ラインレシーバ Line driver/line reciver.

4.3 入出力と信号

との装置の ユニットセレクト 信号は、3本の インタフェースライン (2進3ビット)をもち、ディスクコントローラ からの指令により最大8台のディスクのいずれか1台を選択できる。

ヘッドセレクト は、 5本の インタフェースライン(2進5 ビット)で、ディスク コントローラ からの指令により、ディスク 内部の ヘッド セレクト マトリクス の32 列のいずれか一つを選択する。選択された ヘッドの センタタップ は、 0 Vになり、ライトアンプ からの電流または リードアンプ からの バイアス 電流を引き込み、選択されない ヘッドの センタタップ は+24 Vとなり、ダイオード を逆 バイアス する。

ブロックセレクトは、1本の インタフェースライン(2進1ビット)で、コントローラ からの指令により ヘッド セレクトマトリクス の 32 ヘッド 単位の 2 ブロック に接続されている ライトアンプ(または リードアンプ)が選択される。

ライト回路は、コントローラから送られたライトデータを増やし、ヘッドにライト電流を流し、磁気記録面を磁化させる。

4.4 データリード系の動作

(1) リードスイッチ 回路

リードスイッチ 回路は、一種の アナログ信号 ゲート で図 8. にその回路を示す。図において G 9 の入力 1 、 2 が "H" になると、トランジスタ X_0 は オフ、そのとき G 9 の入力 6 は "L" となり、トランジスタ X_1 は オンとなる。 X_0 が オフ の時は、+24 V から R 301 を通り、 R 305 \rightarrow D 301 \rightarrow R 313(R 306 \rightarrow D 302 \rightarrow R 314)に直流電流が流れ、 D 301, D 302 が順方向に バイアス される。 D 301, D 302 が導通すると、端子 22、52 に供給されている リード ブリアンブ からの信号が G 8 の メインアンプ に加えられる。トランジスタ X_1 は オン であるから +24 V から R 302 を通る バイアス 電流は X_1 に流れ込み、一方 D 301, D 302 を通して流れる パイアス 電流により R 313, D 314 と ダイオード の接続点が正電位となるために、D 303,D 304 は逆 バイアス となり、端子 23,53 の信号は、G 8 の入力に加えられない。

(2) リードメインアンプ と ゼロクロス スイッチ 回路

リードスイッチ 回路を通った信号は図 9. の回路で、 所定の振幅に増幅された後、スイッチング 回路で パルス に変換される。

各部の波形を図 10. に示す。

入力信号は、図 10. の(a)のごとき波形である。この信号を C 302 と R 315 (C 303 と R 316) で構成される微分回路で波形変換すると

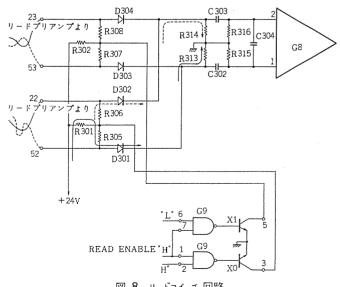


図 8. リードスイッチ 回路 Read switch circuit.

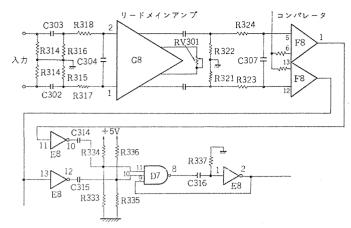


図 9. リードメインアンプ と ゼロクロス スイッチ 回路 Main read amplifier and zero cross switch circuit.

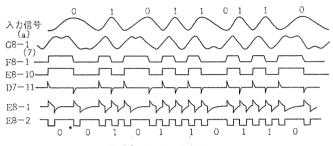


図 10. 各部の動作波形 Wave forms of each of parts.

G8-1(7) に示す波形になる。G8-2 に入る波形は G8-1 の極性を反転したものと同じである。G8-1 (G8-2) の信号は リードメインアンプで増幅されて F8-12 (F8-5) へ供給される。F8 は,高感度の レベルコンパレータ(電圧比較器)で $12\sim13$ 間($5\sim6$ 間)の電位 差 が 2 mV 程度あると,出力が数十 ナノ 砂で スイッチ する回路である。

4.5 リードデータ デコーダ (FD 復調回路) の動作

デコーダの回路構成を図 11. に、その タイミングチャート を図 12. に示す。

ゼロクロス スイッチング した後、整形された情報信号(E 8-4)は D 7-5 に入る。"C"の連続している部分では E 8-3 の信号が D 8-12 に入り,その信号が "H" レベル にあり,しかも立下りの寸前においては, E 7 の ワンショット は トリガ されていないので "L" である。従って,D 8-6 "H",D 8-11 "L",D 8-8 "H" の状態で D 8-3 は "L"となり, フリップフロップ は安定を保つ。 従って D 7-3は "H",D 7-5 も E 7 が トリガ されていないので "H" になっており,E 8-4 の信号は E 7-5 に供給される。E 7 は信号の立下りでトリガ されるので "C" パルス により,E 7-1 は "L"となる。それゆえ,E 7-1 が "H"に復帰するまで D 7-5 の ゲート は閉じられる。以上のような回路動作により,"D"(データパルス)と "C"(クロックパルス)を分離し,かつ データパルス を NRZ(NON-RETURN TO ZERO)変換する。

4.6 タイミングリード系の動作

(1) タイミッグ リードアップ と ゼロクロス スイッチ 回路

本回路については、図8.と同一回路であるので省略する。

(2) タイミング 復調回路

これは、図 13. の回路と同一であるが NRZ 変換する回路はない。 動作は 4.5 節を参照されたい。

(3) セクタ インデックスの 分離回路

この装置の タイミング 記録形式は、1回転につき1個の インデックスマーク が インタフェース 出力として取り出されるほかに、セクタ 数だけの マ

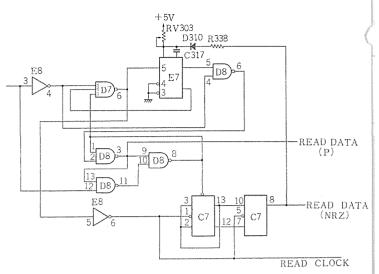


図 11. リードデータデコーダ 回路 Read decorder circuit.

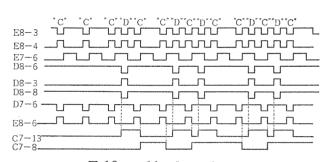
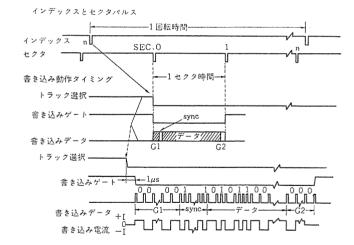



図 12. リードデコーダタイミングチャート Read decorder timing chart.

読み出し動作タイミング トラック選択 読み出しゲート 読み出しデータ (アンプ出力) 読み出しデータ W//// 読み出しクロック トラック選択 読み出しゲート アンプ出力 0101 1 0 0 000 読み出しデータ ППГ 読み出しクロック

図 13. タイミングリード 系の動作 Operation of read timing.

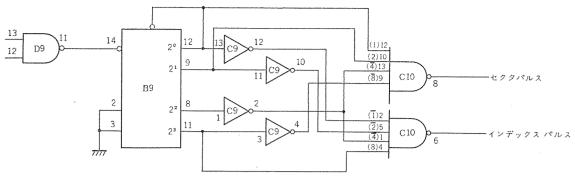


図 14. セクタ・インデックス 分離回路 Sector・index separate circuit.

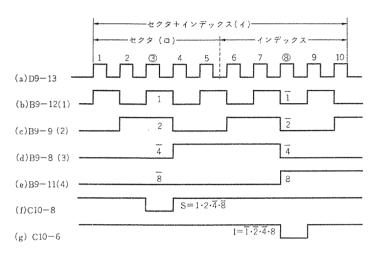


図 15. セクタ・インデックス 分離回路の タイミングチャート Timing chart of sector・index separate circuit.

-クが出力される。タイミングトラックには、図 13. に示されるようにセクタ信号および インデックス 部分のみ データパルス が存在するよう に FD (FREQUENCY DOUBLING)で書き込まれており、この信号から取り出した データパルス の数を カウント することにより、セクタパルス と インデックスパルス を分離することができる。セクタパルス は ディスク の 1 回転の時間を分割している 信号であるから、次の セクタパルス が出るまでの、ある一定時間 カウンタ の動作を停止させることにより、不要なところで ノイズ による セクタパルス が出るのを防止したり、 セクタパルス のインタパル をモニタ して、セクタパルス の脱落や モータ の回転数の異常を検出できるようになっている。

(a) セクタ と インデックス 部分

(b) セクタ 部分

4.7 ライトプロテクト回路

電源事故やオペレーションミス等により、ディスクの記憶内容が破壊されないように保護する。次のいずれかの場合にライトプロテクトする。

(1) ϵ - ϵ - ϵ 電源を投入してから ϵ - ϵ が定常回転になるまでの間

- (2) モータ スタート 5 秒間に 正常な インタバル の セクタパルス がでないとき。
- (3) 読み出し信号 (Read Enable), 書き込み信号 (Write Enable) が同時に選択されたときか,もしくは、同時に選択されないとき。
 - (4) ロジック 用電源+5 Vが、4~4.5 Vに降下したとき。

5. 高密度化と今後の課題

磁気記録システムの情報量を増すためには、記録媒体上の蓄積 密度を上げることが必要である。特に、トラック密度の向上と同 時に、記録波長の短縮をはかる事により、ビット密度を上げる事 が有効である。本装置では、高密度化に関し次の点に十分な考 慮と改良を加えた。

- (1) 磁性層の厚みは、円板素材の超精密切削加工技術による鏡面仕上を施し、めっき技術の向上と相いまって、薄膜めっきのめっきむらをなくした。
- (2) ヘッット は、インダクタンス 負荷に対して、大電流の スイッチンク を行うので記録磁界の立上りが制限されてくるのと、使用周波数の広帯域化に対処するため、次の点を考慮して、コアの形状、 材質を決めた。
 - (a) 実効透磁率,飽和磁束密度,電気比抵抗が大きいこと。
 - (b) 抗磁力が小さいこと。
 - (c) 耐摩耗性があること。
 - (d) 温度による劣化が少ないこと。

また、磁気抵抗を大きくし、巻数を少なくすることにより、インダ クタンス負荷を小にした。

- (3) 空げき(隙)(ヘッドーディスク間)は均一な加圧力が加わるような支持ばねァームを開発し、浮上特性を良好なものにした。
- (4) 記録密度が上ると、読み出し記録 パターン は、記録時の $^{\circ}$ の形状等により、読み出し電圧が双峰的とならず、電圧が低下し、ピークシフト が発生する。

これに対処するため、データパターンを 判別し、 ゲート 幅を コントロール する回路により、ある程度の シフトによる データエラー を補償できた。

今後,さらに高密度化する際には、コア材料、スライダの材料、スライダの加工方法、超薄膜めっき、ヘッドと媒体間の空げきの縮少、変調方式、センスアンブ等の検討が必要となろう。

6. む す び

以上, 固定 ヘット 磁気 ティスク 装置の概説, 仕様, 開発時の問題点等に関して記述してきたが, この装置は, MELCOM 80 ラリース の

ランダム アクセスメモリ としてすでに約400 台の生産実績をもつほか、社内・外の小形電算機システムにも数多く導入されている。今後共大容量化による ビットコスト の低減、並びに高速 アクセス 等の要求は強まると思われ、これに対処し得る新技術の開発に力を入れてゆきたい。

なお現在 M 814, M 824 の ビット 密度、トラック 密度を大幅に上げた機種の開発試作も完了しており、現在評価試験中である。本装置についても、いつか報告する機会を得られれば幸いである。

参考文献

磁気へッドに関するもの

- (1) 岩崎, 藍沢: 磁気記録研究会資料, MR 71-19 (昭 46)
- (2) 佐藤, 安田: 磁気記録研究会資料, MR 72-30 (昭 46)

- (3) H. M. Sierra; IBM JOURNAL., 22~33 (JANUARY, 1963) 磁気円板に関するもの
- (4) Robert I. Potter: IEEE Transactions On Magnetics, MAG-7, No. 4 (December, 1971)

浮動機構に関するもの

(5) R. K. Brunner (至本: IBM JOURNAL., A Gas Film Lubrication Study I ~ II (JULY, 1959)

その他

- (6) 川义:研究実用化報告, 2365 号
- (7) 織田、千石:エレクトロニクス ダイジェスト、169、11、37~48 (昭 47)

無人海洋計測ロボットの計算機制御

小寺嘉一*•荒屋真二*•武田捷一**

Computor Control of Unmanned Ocean Space Robot

Central Research Laboratory

Yoshikazu Kotera • Shinji Araya • Shoichi Takeda

This unmanned underwater vehicle is equipped with a minicomputor and moves automatically on a specified measuring schedule and collects data of the ocean.

This computor processes the on-line data on vehicle dynamics for the attitude and course control, supervises sonic communication and data recording devices, and also has diagnostic functions against hardware failures and accidental troubles.

In this paper, we report on the processing methods of position and vehicle dynamics data, especially, the filtering and estimation -prediction algorithm of noisy data and the control command program for measuring mission in a specified pattern.

Some of simulation results are also presented to verify the proposed algorithms.

1. まえがき

本報告における Dボットシステム は,海洋・海象計測用の無人水中航走体を中心とし,主として水平面内をあらかじめ定められた運航パタン,計測 Zケジュール に従って運航するもので,OCEAN-SPACE-ROBOT (Horizontal) の意より OSR-H システム と呼称される。水中航走体は z=z<math>z=z (MELCOM-70,R-1)を積載し,水中通信,計測・機体運動 z=z0 の z0 の z0 のである。機械振興協会よりの研究開発委託により機体構造に関しては三菱重工(株)が,情報処理の方式と装置に関しては当社が主として担当した。

ことでは ロボット 航走体の計算機制御に関して報告する。

2. 機体モデル式

制御対象となる OSR-H 機体の運動は三次元空間内での連成系として記述され、相互干渉項を有するものであるが、コントロールアルゴリズムを簡単にするため干渉項を無視し、 また相互干渉項が小さくなるように機体運動を制限した。 水平面内運動に関しては図 1. に見るように座標をとり、次の式で表現されている。

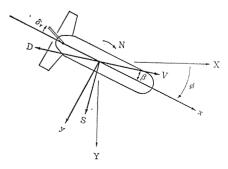


図 1. 機体モデル式 (ヨー面のみ) Mathematical model of OSR-H in yawing plane.

$$\begin{cases} m_x \dot{v}_x - m_y v_y \omega_z = T + F_x \\ m_y \dot{v}_y + m_x v_x \omega_z = F_y \\ I_z \dot{\omega}_z = N \end{cases}$$
(1)

ととで T は 252ト 出力で プロペラ 回転数 n の関数である, F_x , F_y は流体力で次式より求められる。

$$F_x = F_0(C_{sr}N_0\beta\omega_z - C_D)$$
(2)

$$F_{y} = F_{0}(C_{s\tau}N_{0}\omega_{z} + C_{s\beta}N_{0}\beta + C_{s\beta}\beta + C_{D\beta} + C_{s}\delta_{\tau} \cdot \delta_{\tau}) \quad \cdots (3)$$

N は回転 モーメント である。

$$N = F_0 l(C_{N\tau} N_0 \omega_z + C_{N\beta} N_0 \dot{\beta} + C_{N\beta} \beta + C_{N\delta\tau} \delta_{\tau}) \cdots (4)$$

ことで β は横角と呼ばれ $\arctan(-v_y/v_x)$ である。他は機体定数 さらに機体運動の軌跡は,

$$\begin{cases} \dot{\psi} = \omega_z \\ \dot{X} = v_x \cos \psi - v_y \sin \psi + V_{CX} \\ \dot{Y} = v_x \sin \psi + v_y \cos \psi + V_{CY} \end{cases}$$
 (5)

により求められる。ととで V_{CX} , V_{CY} は各々潮流成分である。 ピッチ 面内運動もほぼ同様の方程式で表現されている。 ロール 角に ついては浮心と重心の位置差による復元力のみによることにした。

3. 音響系による位置計測

OSR-H は自己の位置を検出するため超音波を用いているが、 と こではそのための $\pi_{\nu j 1 1}$ 処理についてのべる。 まず 3 個の音響燈 台 A,B,C を図 2. に示すように海底の一辺 3 km の正三角形の頂点に配置する。各音響燈台は異なった発振周波数を持ち, Aの発信

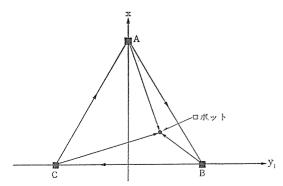


図 2. 音響燈台と位置計算の座標 Allocation of transponders and position coordinates.

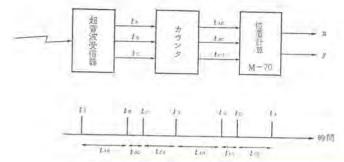


図 3. 位置計算の実施方式 Processing scheme of accoustic system.

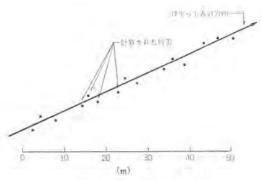


図 4. 位置計算の結果 Calculated positions.

3.1 計算方法

時間差信号 tac が求められれば、ただちにB と Cからロボットまでの距離の差が求められる。したがってロボットが B, C より距離差が一定の双曲線上にあることが知られる。また tab を用いてA, B までの距離差も求められるが、AB からと BC からの二つの距離差が一定の点はある直線上にあることがわかる。したがってこの双曲線と直線の交点が求める位置となる。この交点を求める計算法としては、ここでは Newton-Raphson による反復計算法を用い、ミニコンピュータで十分な精度と短い計算時間を実現する ために プログラムは固定小数点とし、適宜倍精度、3 倍精度演算を用いた。

以上に述べた方式による ブログラム を用いて三十数例の計算を実行した結果、計算時間は最大 6.5 ms、誤差は一般に 1 ~ 2 m で、6 m 以内におさまる。ここで誤差は大部分時間差信号の精度によるもので、図 3.の カウンタは 750 Hz の パルス で計算するために 2 m 以内の距離は識別できないためである。また三角形内のロボットの位置によって誤差の傾向は当然変化するが、この場合三角形の左右の頂点の近くで誤差は増大する。

3.2 位置計算実施方法

3.1 節に述べた方法で位置情報を次々と得るためには、この計算をロポット内で適当な周期で自動的に繰り返す必要がある。超音波は周期6秒で三角形 ABC を1 周するので、6秒間に平均2秒間隔で3個の新しい時間差信号を順次得るが、このうち計算に必要なものは2個であるため3組の異なった信号対が可能となる。このことを

利用して新しい信号を得るでとに、その直前のものとの対により位置計算を実施すれば相対的位置が異なるためにその誤差が変化し、これらの誤差をラッダム雑音として平滑化するためにも好都合である。 図 4. の計算例は ロボットが 2 m/s で直進中にとの方法を用いて位置計算した場合を想定したもので、これによると計算値は直線を中心にほぼ均等に分散していることがわかる。ただしこれまでの結果は海水の音波特性の場所的変化については考慮されていない、これについては海中における実験が当然必要となろう。

4. 雑音処理と位置・潮流推定

音響座標系よりのパルス別を前節にも述べたとおり、処理計算して得られる位置情報には、水中雑音、水温の不均一による誤差のほか数値計算上の誤差もあり、このため位置計算値には連続・不連続の不確定要素があり、はなはだしい場合には位置の認識が不可能となる。これら雑音成分を除去し、平滑化し、また、観測値列間を補間し、子測する必要がある。このための最小自乗誤差フィルタとカルマンフィルタの方法についてのべる。こうしてフィルタされた位置推定値から直接観測が不能な潮流の大きさ、方向を推定し、制御量が決定される。

4.1 最小自乘誤差推定

ある時刻において位置観測値 X_0 を得たとき、さらに過去の観測値 X_{-1} , X_{-2} , X_{-3} を加えて X の推定値 \hat{X} を誤差最小で一次近似、二次近似する方法はよく知られている。 図 5. のように観測値を 4 点とし、その推定値との誤差 $(d_0, d_{-1}, d_{-2}, d_{-3})$ の自乗和を最小にするべき一次式 x(t)=at+b の各係数 (a, b) を決定すると、 $t_0=0$, $t_{-1}=1$, $t_{-2}=2$, $t_{-3}=3$ として、次のように求められる。

$$\begin{pmatrix} a \\ b \end{pmatrix} = \frac{1}{10} \begin{pmatrix} -3 & -1 & 1 & 3 \\ 7 & 4 & 1 & -2 \end{pmatrix} \begin{pmatrix} X_0 \\ X_{-1} \\ X_{-2} \\ X_{-3} \end{pmatrix} \dots (6.5)$$

とうして t=0 における X の推定値 \hat{X}_0 は過去 3 点の 観測を合わせて

$$\hat{X}(0) = \frac{1}{10}(7X_0 + 4X_{-1} + X_{-2} - 2X_{-3})$$
 (7)

により計算される。今観測値がすべて等しい分散 σx を有するとき 推定値 \hat{X} の分散 $\sigma \hat{x}$ は

$$\sigma_{\hat{x}}=0.7\sigma_{X}$$
 (8)
となる。この分散は過去の観測値列を多く使えば小さくすることができるが、簡単な計算により、 N 個の観測を用いるとき、

$$\sigma_{X} = \frac{2(2N-1)}{N(N+1)} \sigma_{X}$$
 (9)

となることがわかり、分散を半分にするためには過去7点の蓄積が

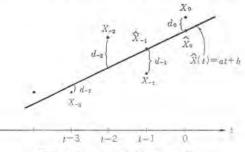


図 5. 最小自乘誤差推定 Curve fitting method of least square error.

必要となる。このとき Jang 出力の応答は悪くなる。 さらに at^2+bt+c なる二次回線で近似する場合もほぼ同様にして

$$\hat{X}(0) = \frac{1}{20}(19, 3, -3, 1)(x_0, x_{-1}, x_{-2}, x_{-3})^T \cdots (10)$$

として現在の推定値が求められる。このとき推定値の分散 σ҈ は

$$\sigma_{\hat{X}} = \frac{19}{20} \sigma_{X}$$
 (11)

にしか低減しない、過去5点の観測を用いて次の値となる。

$$\sigma_{\hat{X}} = \frac{199}{244} \sigma_X \qquad (12)$$

このような推定法によれば一定時間経過後にも推定値が真の値に 収束することがなく、定常的なばらつきが残ることになる。制御量 計算、機体動特性を経て定常的な応答にも影響する。

4.2 位置の予測及び潮流の推定計算

このようにして得られた (XY) 平面内での位置推定値をもとにして,観測点間及び観測点以後の位置に関する予測値は,ほぼ連続的に計測可能な機体運動 \vec{r} -p v_x , v_y , ψ をもとにして,また,潮流の推定値 \hat{V}_{CX} , \hat{V}_{CY} を用いて,

$$\begin{cases}
\bar{X}(t_0 + \Delta \tau) = \hat{X}(t_0) + \Delta \tau (v_x \cos \psi - v_y \sin \psi + \hat{V}_{CX}) \\
\bar{Y}(t_0 + \Delta \tau) = \hat{Y}(t_0) + \Delta \tau (v_x \sin \psi + v_y \cos \psi + \hat{V}_{CX})
\end{cases} \dots \dots (13)$$

となる。とこで $\Delta \tau$ は数値積分の区間であり、との予測を繰り返して次の観測の後の推定値との差より潮流の推定値 \hat{V}_{CX} , \hat{V}_{GY} は修正されてゆく、 すなわち予測のための数値積分とその機体運動 $\vec{\tau}$ - ϕ が十分に精度高ければ、

$$\begin{cases} \hat{V}_{CX}(t_0) = \hat{V}_{CX}(t_{-1}) - \frac{\alpha}{\Delta t} [\bar{X}(t_{-1} + \Delta t) - \hat{X}(t_0)] \\ \hat{V}_{CY}(t_0) = \hat{V}_{CY}(t_{-1}) - \frac{\alpha}{\Delta t} [\bar{Y}(t_{-1} + \Delta t) - \hat{Y}(t_0)] \end{cases}(14)$$

により逐次真の値に漸近してゆく,ととで $t_0=t_{-1}+\Delta t$ であり, また,との フィルタ 構成,雑音特性では, $\Delta t=2$ s で $\alpha=0.06\sim0.1$ が妥当であった。

実際に OSR-H 機体に見たてた数学 モデル 式に対し、雑音処理、未知潮流推定を実行して、別に定める コントロール アルゴリズム に従い行なった航行 シミュレーション の結果を図 6. に示す。 機体運動等の積分性により位置推定の分散より軌道の分散は小さくなっているが、これは観測の経過とともに改善されることはない。この点に関して観測の進行とともにその推定値の分散が減少してゆくような次項の手法を適用・比較してみた。

4.3 カルマンフィルタの適用

機体の運動特性には大きな非線形性が含まれているが、計測可能

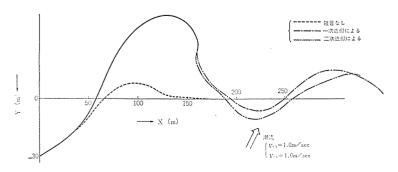


図 6. 最小自乗誤差法による直線航行 Example of line tracking in oceanic current.

な機体運動変数 v_x , v_y , ψ と機体の位置の関係は潮流成分を V_{CX} , V_{CY} として、次の式

$$\begin{cases}
\dot{X} = v_x \cos \psi - v_y \sin \psi + V_{CX} \\
\dot{Y} = v_x \sin \psi + v_y \cos \psi + V_{CY}
\end{cases}$$
(15)

で表わされる。この右辺は各々対地速度成分を意味し、新しく V_x 、 V_x で表わすと、機体運動は各成分に関して線形の ダイナミカル システム として表現でき、カルマンフィルタリングの手法が適用できる。 潮流が変化する海域もあるが、観測の区間で潮流に変化がなく定常的であると仮定すると、

$$\begin{cases} \dot{V}_{X}=0\\ \dot{V}_{Y}=0 \end{cases}$$
 (16)

となる。機体運動変数のうち v_α , v_y , ψ はほぼ連続的に得られるから,未知の潮流は対地速度の推定値より対水速度分を引けば

$$\begin{cases} \hat{V}_{CX} = \hat{V}_X - (v_x \cos \psi - v_y \sin \psi) \\ \hat{V}_{GY} = \hat{V}_Y - (v_x \sin \psi + v_y \cos \psi) \end{cases} \dots \dots (17)$$

として求められる。

X方向の運動とY方向運動に相関はないから、以下X方向成分のみを考える。式 (15), (16) より新しく状態ベクトル ** と観測値 y を次のとおりとする。

$$x = \begin{pmatrix} V_x \\ \chi \end{pmatrix}$$
(18)

$$y = Hx + q$$
, $H = (0, 1)$ (19)

ことでqは観測機構,位置計算の持つ雑音であり,正規性を仮定して,

$$\begin{cases}
E\{q\}=0 \\
E\{q^2\}=Q
\end{cases}$$
(20)

とする。 このとき観測より処理して得られる推定状態量 \dot{x} と真の状態量xとの誤差の分散を最小にするべく \hbar カルマンフィルタ の構成は決定される。 誤差の分散 \hbar は \hbar フィルタ 直後の推定状態 \hbar を用いると

フィルタゲイン を K とすると、観測ごとの推定値は

$$\hat{\mathbf{x}}_{N} = \hat{\mathbf{x}} + K(y - \dot{y}) \cdots (22)$$

で表わされる。最適な $f_{1-1}K$ としては各観測ごとの推定誤差の分散 p の関数として次のように求められる $^{(1)}$ 。

$$K = pH^T \left[HpH^T + Q \right]^{-1} \dots (23)$$

また、分散行列々は次の離散形の分散方程式により得られる。

$$p_n = p - pH^T [HpH^T + Q]^{-1}Hp$$
(24)

位置の観測は一定時間ごとにしか行なわれない,この間にも連続に近い制御を行うため観測以後の予測を行なうことは,とくに遅れの大きいこの システムの コントロール には必要である。このため式(13)に

よる予測を行う。 ここで機体運動 f-g に雑音を含まず,また,数値積分の精度も高いとすればこの区間で推定誤差 \hat{x} の 伝ば(播)は線形であり, $\Delta t = n \Delta \tau$ として,

$$\widetilde{\mathbf{x}}(t_0 + n \Delta \tau) = \begin{pmatrix} 1 & 0 \\ n \cdot \Delta \tau & 1 \end{pmatrix} \widetilde{\mathbf{x}}(t_0) \dots (25)$$

に従って伝ばする。次の観測の時点で分散は、

$$\phi = \begin{pmatrix} 1 & 0 \\ \Delta t & 1 \end{pmatrix} \tag{26}$$

により次のように変化する。

$$p(t_0 + \Delta t) = \phi p(t_0) \phi^T \quad \dots \qquad (27)$$

潮流に変化のある海域では、 誤差の伝ばが式 (26), (27) の

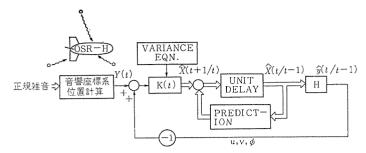


図 7. カルマンフィルタ による位置推定 Optimal filter (discrete time).

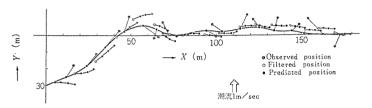


図 8. 雑音処理による直線航行(カルマン フィルタリング) Line tracking through noisy data processing in oceanic current.

ようにならず

$$\phi = \begin{pmatrix} 1 + \varepsilon_1 & 0 \\ \Delta t & 1 \end{pmatrix} \qquad (28)$$

とする必要がある。 ここで & は予測計算の誤差の分散に相当する 微小 パラメタ であり、その海域での潮流変動を仮定して適当に決められる。このときは フィルタ された推定値が定常的なばらつきをもつことになる。

とのようにして構成される $_{74}$ ルタを図示すると図 $^{7.}$ のようになり、図 $^{6.}$ 、 $^{7.}$ と同じ航行 $_{52}$ ュレーション をした結果が図 $^{8.}$ である。推定した潮流の値もほぼ真の値に収束している。

5. 針路制御,深度・速度制御

機体 \mathbf{E} 元 双項でもふれたが, 機体制御のための制御変数は, 垂直,水平舵角 δ_r , δ_e および 252ト 出力 T であり,いずれも遅れ をともない,また機体のもつ応答時定数はさらに大きい,観測系の もつ遅れを補償してもなおむだ時間特性がある。

5.1 針路制御

姿勢制御のうち ロール 角制御は浮心と重心の位置差による 復元力のみとし計算機制御は行なわない。 直進中の コントロール は水平・垂直とも基準角との角差による フィードバック 制御とし,立ち上がりの悪さに関して ピッチ 角, ヨー 角の レート 信号による P-D コントローラとした,このためわずかながら定常的な振動 モード を残すこともある。

$$\begin{cases} p = Cp_1(Y - Y_0) + Cp_2(\psi - \psi_0) + Cp_3R/V_K \\ \dot{\delta}_r = \frac{1}{5}(p - \delta_r) \end{cases}$$
 (29)

各係数は種々検討の結果次のように決めた。 $Cp_1=0.5,\ Cp_2=20,\ Cp_3=40$

舵効果は舵角 15 (degree) 位で飽和する特性であり、 操舵機 パワ の点からも ±15 (degree) をその舵角制限とした。

$$|p| \le 0.2618 \text{ (rad)} \quad \dots (30)$$

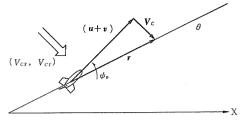


図 9. 潮流中の直線航行 Line tracking in oceanic current.

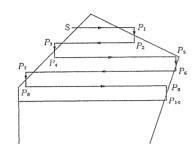


図 10. 標準形走査パタン Standard pattern for area scanning.

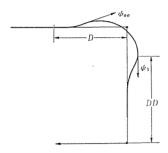


図 11. 角点通過 Control parameters for cornering.

その効果は非線形に効く,直進航行の状態では十分有効であるが,位置偏差の大きいところでは非線形性が大きく, コントローラ として安定でない。そこで位置偏差が一定以上の点からは角度制限だけを効かせてまず目標直線の近傍に進入させ,そののち式(29)の フィードバック を効かせるととにした。

潮流中の直線航行は $\mathbf{3}$ $\mathbf{-}$ 角をその相当分だけ バイアス させてさかの ぼるととにしている。 図 $\mathbf{9}$ のように対水速度 $\mathbf{u}+\mathbf{v}$ に潮流 \mathbf{V}_{C} を 加えた真の速度 (対地速度) \mathbf{r} は,

$$r = (u+v) + V_C \cdots (31)$$

$$\psi_0 = \arctan\left(\frac{u\sin\psi + v\cos\psi + \hat{V}_{CY}}{u\cos\psi - v\sin\psi + \hat{V}_{CX}}\right) \dots (32)$$

となり、 計算に必要な分母、 分子はすでに式 (15) で計算されているものである。すなわち見かけの姿勢角は潮流の推定値が求められるごとに計算される。

5.2 施回運動制御

実際の計測目的のための運行は 図 10. に見るように、 ほとんど が直線軌道のつなぎ合わせとして表現される幾種類かの パタン に 沿って行なわれる。本航走体の最小回転半径は約 50 m あり、 角点到 達ののちに回転を指令すると オーバシュート を生じる。また正舵のみに

よると角点を遠くはなれてしまうため、 計測 \vec{r} -g の質が悪くなる。そこで 図 11. のごとく、 できるだけ位置誤差の積分の小さくなる 軌道を選んだ。 このような 旋回運動に必要な コントロールパラメタ として DD, D, ψ_0 , ψ_1 をすべて潮流と対水速度、 回転角の簡単な関数 として決定した。

$$D=50+35V_{CX}+15V_{CY}+5V_{CX}V_{CY}$$
 (33)

$$\psi_{00} = -0.22 - 0.66 \ V_{CY} \dots (34)$$

こうして新しい針路方向に旋回ののちは次のたどるべき直線のデータを読みとり直線航行をする。 このとき次の角点までの距離が接近しているときは、 パラメタ DD により判断してさらに次の直線データを読みこむのである。回転のためのパラメタはこのほかに回転角を示すパラメタがあるが、ここでは ±90°に限ってパタン表現を行なっている。

5.3 イニシャライゼーション・円運動のコントロール

こうして実行される一つのパタンと次のパタンのつなぎ(Termination) や、沈降ののち次のパタンの出発点に望ましい姿勢で進入させるプログラムが必要である、イニシャライゼーションアルゴリズムとして次にのべる。オープンループのコントロールはモデル式が不十分のため適用できない。希望の地点に接する一定半径の円を想定し、できるだけ短い経路でその円周を廻わるプログラムである。図12.によると円から遠いところではその円の接線の一方に近づけ、接点に到達ののちは一定半径で中心を直角に見込むことにしている。計算式は次のとおり、中心と現在位置を(CX, CY)、(X, Y)として

Dist. =
$$\frac{(CY-x)(r)_X - (CX-X)(r)_Y}{|r|}$$
 (35)

は進行方向延長線と中心の距離を計算し一定に保つためのもので、 その中心とのなす角は内積をとり、

$$ppp = \langle (CX - X, CY - Y), r \rangle \cdots (36)$$

この二つの量を リイニシャライゼーション の舵角計算は 次のように 求められる。

$$p = Cp_1(\text{Dist.} - p_{LR} \cdot RO) - p_{LR} \cdot Cp_2 ppp + Cp_3 R/V_K \cdots (37)$$

ここで p_{IR} は左回転,右回転を区別する $n_{5/4}$ 3 であり,RO は指示する半径である。また,内積項の係数 Cp_2 は内積が有のときのみ値をとり,こうして円軌道へ p_3 0 (螺)線で近づくことをさけ,短い時間で到達するようにした。 図 13. に左回りの場合,図 14. には潮流中での適用例を示した。観測中に水中通信指令により計測を中断し,その場付近で,中心と半径を与えられて周回をつづけさせるプログラム にもこの計算方式を流用する。

5.4 深度制御・速度制御の方式

深度制御も水平回頭角制御とほぼ同様の方式をとる。深度計からの信号はほぼ連続的に得られ、雑音も無視できるとしフィルタリングを行なわない。 階段状の深度変更時のため姿勢角制限の アルゴリズム を適用し、積載機器、電池類への影響を少なくした。

未知潮流のある海域での計測を行なう場合,当 OSR-H 航走体のように潮流速度と近い対水速度しか持たない場合は、推定潮流値を考慮した速度 コントロール を行なわねばならない。 フィルタ 推定状態のうち進行方向対地速度を用いて推進用電動機の界磁電流制御を行なうことにした。

6. 計測パタンの発生・選択

前節にもふれたとおり、計測 パタン は各直線の始点、 長さ、その 方位角の組み合わせで表現されている。 標準的な走査形 パタン を指

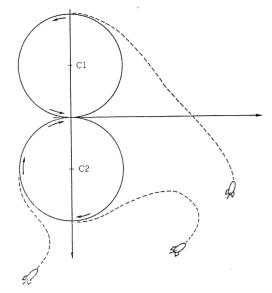


図 12. イニシャライゼーション Initialization.

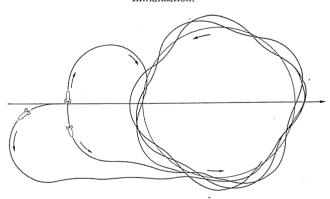


図 13. 指定された円軌道への進入 Example of circumnavigation in the appointed direction.

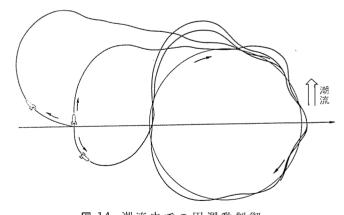


図 14. 潮流中での円運動制御 Circumnavigation in oceanic current.

令実行した結果を図 15. に示す。他にく(矩)形 パタン, 円形 パタン等を用意している。一般に OSR-H 機体の運用については, 積載の論理制御回路の記憶素子に蓄積されている運航 パタン により, 沈降から浮上まで一連の動作が実行される。 運航 パタン としては, 次の 4項目があり, それぞれ数種類が選択される。

(a) 水平面内運航 パタン 5 種類 (P₁~P₅)

(b) 基準速度 3種類 (V₁~V₃)

(c) 基準深度 5種類 (H₁~H₅)

(d) 計測時間間隔 5種類 (T₁~T₅)

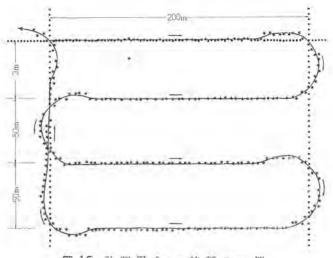


図 15. 計 測 用 パタン 航 行 の 一 例 A generated pattern for measuring mission.

ST A R	$\overline{\overline{P_f}}$	T	$\overline{P_4}$	Т	15,		T
--------	-----------------------------	---	------------------	---	-----	--	---

図 16. パタンデータ の蓄積 Stored pattern data.

各運航 ブログラム \bar{P} は上記の組み合わせ $\bar{P}=\{p_i,\ V_j,\ H_m,\ T_n\}$ で表わすものとする。 1回の $\underline{z}_{yy}\underline{z}_{yy}\underline{z}_{yy}$ は数種類の運航計測 \mathring{N}_{yy} により図 16. のように記憶され、各 \mathring{N}_{yy} 終了後、ブログラム T が実行される。 T は $\underline{z}_{yy}\underline{z}_{yy}\underline{z}_{yy}$ 終了時や $\mathring{N}_{yy}\underline{z}_{yy}$ のつなぎに用いられる ブログラムで、現在位置より浮上予定海域や、次の $\mathring{N}_{yy}\underline{z}_{yy}$ の出発点へ導くもので、浮上指令を持つため円を描きながら定位置を保つためにも用いられる。前節 $T_{yy}\underline{z}_{yy}\underline{z}_{yy}$ プログラム を流用した。

7. む す び

以上 OSR-H 機体の計算機制御に必要な情報処理方式を若干のション結果とともに報告した。

三次元実機モデル による総合的な シミュレーション 試験を計画中 である。

参考文献

 R. E. Kalman: New Methods in Wiener Filtering Theory, John Wiley and Sons.

磁気浮上走行車制御装置

白 庄 司 昭*·六藤 孝 雄**·太田征四郎**

Control System for Magnetic Levitation Vehicles

Head Office Akira Shirashoji Itami Works Takao Mutô • Seishirô Ôta

For the purposes of study and development of super-high speed railways, a test device of magnetic levitation vehicles has been constructed in the yard of the railway engineering laboratory and opened to the public as a part of the commemoration of a hundred year anniversary of J. N. R.

The test device is in such a system as to propel magnetic levitated vehicles by means of primary linear motors (LIM) set up on the ground. Each LIM is fed with power from a thyristor power supply arrangement. There is a control system with which the vehicles are made to run automatically by a predetermined pattern by changing over the LIM assigned to the power feeding objective corresponding to the position of vehicle and by controlling the propulsion which varies sharply with the change of running resistance. This article describes this control system.

1. まえがき

超高速鉄道研究開発のため、磁気浮上走行試験装置が、鉄道技術研究所構内に建設され、鉄道100年記念事業の一環として公開実験が行なわれた。この試験装置は、走行車に積載した超電導電磁石と、走行路に配置された常電導浮上コイルとの間の磁気反発力で走行車を浮上させ、地上一次式リニアインダクションモータ(以下 LIM という)で推進走行させる方式である。

この試験装置の制御装置は、走行車をすべて地上側で制御しており、走行車の位置に応じて励磁対象の LIM を切り換えるとともに、サイリスタ 位相制御によって LIM に供給する電圧値を制御する 可変電圧制御を行なっており、所定の走行パターンに従って自動走行させる自動運転機能 (ATO) ならびに保安機能 (ATC) を有している。

以下,まず,磁気浮上走行試験装置の構成の概要を述べ,その後 に制御装置の概要を紹介する。

2. 磁気浮上走行試験装置の構成ならびに主要諸元

磁気浮上走行試験装置は、次のような装置より構成されている。

- (1) 走行車
- (2) 走行路
- (3) 制御装置
- (4) 計測装置
- (5) 超電導電磁石励磁装置
- (6) その他の付帯設備

以下に、これらの装置の概要を述べるが、計測装置、超電導電磁 石励磁装置、その他の付帯設備については、制御に関係がないので、 省略する。

2.1 走行車

試験用の走行車には、車体床下中央に推進用のLIM リアクション プレートが、 また、その両側に浮上用の超電導電磁石が 1 台ずつ装備されている。また、車体支持は、シュー による方式で、滑走 シュー および案内 シュー がそれぞれ 4 箇所に取付けられている。

走行車の外観は、図 1., 断面構造は、図 2. のようであり、走行

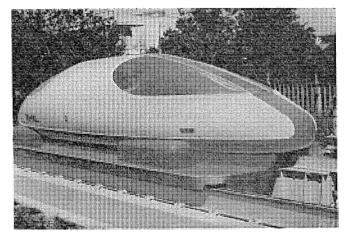


図 1. 走 行 車 Experimental car.

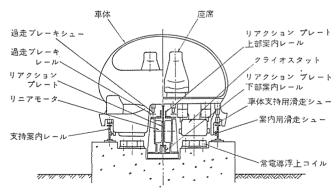


図 2. 走行車ならびに走行路断面 Cross section of experimental car and rail road.

車の主要諸元はつぎのとおりである。

- (1) 外形寸法: 7 m(長さ)×2.5 m(幅)×2.2 m(高さ)
- (2) 重 量: 3,500 kg (荷重を含む)
- (3) 定 員: 4名(4座席)

2.2 走行路

試験走行路は、全長 $480\,\mathrm{m}$ の直線であり、走行路の中央部の $350\,\mathrm{m}$ が通常走行区間、その両端の各 $65\,\mathrm{m}$ が過走 $\mathrm{J}_{\nu-}$ + 区間である。

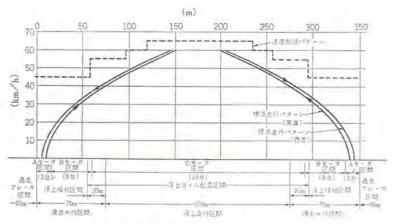


図 3. 走行路区分 Division of experimental rail road.

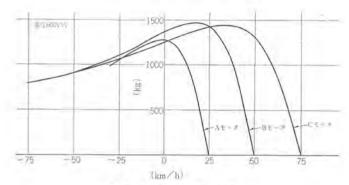


図 4. LIM 推力特性 Thrust characteristics of LIM.

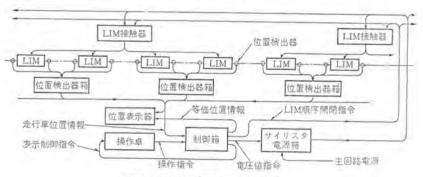


図 5. 制 御 装 置 機 器 構 成 Block diagram of control system.

通常走行区間の中央部 200 m が浮上走行区間, その両側の 各 75 m が滑走走行区間であり, さらに滑走走行区間の中央側の 20 m が 浮上緩和区間である。通常走行区間には,推進用の LIM 一次 コイルが, また, 浮上走行区間および浮上緩和区間には, 浮上用の常電導コイルが配置されている。また, 過走 ブレーキ 区間には, 過走防止 ブレーキレールが取付けられており,走行車が過走した場合,走行車の過走 ブレーキシュー と過走防止 ブレーキレール とによる機械的 ブレーキ が作用する。

走行路の断面構造は図 2., 走行路区分は図 3. を参照されたい。 2.3 LIM

走行推進用の LIM は、速度領域に対応して低速域用の A ϵ -9、中速域用の B ϵ -9、高速域用の C ϵ -9 の 3 種類が使用されており、通常走行区間に ϵ -5.5 m ϵ -9・で合計 ϵ -6 台が配置されている。

それぞれの LIM の配置区分は図 3., 仕様は表 1., 推力特性は 図 4. のようである。

表 1. LIM 仕 様 Specification of LIM.

游元	所別	A形モータ	B形モータ	C形モータ
形	式	三相 20 極 両側方式	三相10 版 両侧方式	三相6樹 両側方式
同期連	Œ km/h	25	50	75
定	俗	600 V + 50 Hz	600 V • 50 Hz	600 V • 50 Hz
Ш	100	低速用	中速用	高速用

図 6. 操作卓 Operation desk.

2.4 制御装置

制御装置は、つぎの6種類の機器より構成されている。制御装置の構成の概略は、図5.のようである。

2.4.1 位置検出器ならびに位置検出器箱

位置検出器は、走行車の位置を検出するもので、 制御ならびに表示用として走行路の全 LIM の両端 に各1台ずつ、合計128台、また、表示用のみとし て、走行路両端部に合計12台が配置されている。

この位置検出器は、走行車の LIM リアクション ブレートの通過を検知するもので、リアクション ブレート の温度

上昇,ならびに超電導電磁石の強磁界の影響を考慮した,耐熱防水 形の近接 スイッチ が使用されている。

位置検出器箱は、位置検出器 4 台分の高周波発振部、信号出力の 増幅部および電源部が格納されており、 走行路脇に合計 35 台が配 置されている。

2. 4. 2 操作卓

操作卓は、走行車の運転操作を行ならもので、自動運転用の出発スイッチ、手動運転用の手動 ハンドル、ならびに走行状態・制御状態などを表示する計器および表示灯類が設けられており、走行路中央部の走行路脇に建てられた操作室内に配置されている。

2. 4. 3 位置表示器

位置表示器は、運転操作用として走行車の刻々の位置を表示する ものであり、前述の操作卓の上部に配置されている。

2. 4. 4 制御箱

制御箱は、この制御装置の制御本体部であり、位置検出器よりの

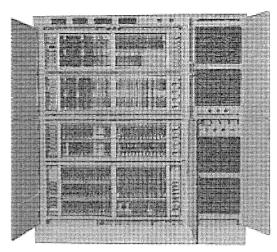


図 7. 制 御 箱 Control box.

走行車位置情報、ならびに操作卓よりの操作指令によって演算制御を行ない、後述の サイリスタ 電源箱と LIM 接触器箱に対して、それぞれ LIM 供給電圧値の指令と LIM 順序開閉指令を与える。

また、この制御箱には、制御 システム 全体の ダイナミック な試験を行なうための シミュレータ が内蔵されている。

2.4.5 サイリスタ電源箱

サイリスタ 電源箱は, 制御箱から与えられる指令に基づいて,主回 路電源の三相 $50\,\mathrm{Hz}$ $780\,\mathrm{V}$ AC を位相制御し, 各 LIM に 供給する。

2.4.6 LIM 接触器箱

LIM 接触器箱は、制御箱から与えられる LIM 順序開閉指令に基づき、必要な LIM の励磁ならびに消磁を行なうもので、LIM 4台分の接触器が格納されており、 走行路脇に 合計 16 台が配置されている。なお、この LIM 接触器には、三相交流用の真空しゃ断器が使用されている。

3. 制御装置の性能ならびに機能

制御装置の性能ならびに機能の概略は、つぎのとおりである。

3.1 制御諸元

(1) 制御区間: 350 m

(2) 最高速度: 60 km/h

(3) 標準加減速度: 3.5 km/h/s

(4) 標準走行 パターン: 図 3. 参照

(5) 速度制限 パターン: 45, 55, 65 km/h の 3 段階(図 3. 参照)

(6) 速度制御方式: 可変電圧制御

(7) ブレーキ 方式

(a) 通常走行区間: LIM 遊相 ブレーキ

(b) 過走 ブレーキ 区間: 機械 ブレーキ

3.2 主要機能

3.2.1 自動運転制御

操作卓の出発 スイッチ を操作すれば、図 3. の標準走行 パターン に従った自動走行制御を行なう。

3.2.2 手動運転制御

操作卓の手動 $N \cup \tilde{N} \cup \tilde$

3.2.3 過速度検知

走行車の速度が、図 3. の速度制限 パ9-2 以上になると、主電源をしゃ断し、走行車の持つ走行抵抗または過走 プ0-4 区間の機械 プ0-4 によって、走行車を走行路内に停止させ、走行車の過走を防止する。

3. 2. 4 表示制御

走行車の運転操作のため、走行車の刻々の位置および速度、LIM 供給電圧、力行・だ(情)行・プレーキ・過速度検知などの制御状態を 表示する。

3.2.5 シミュレーション

制御装置の動作 チェック を兼ねて、 制御 システム 全般の制御機能を確認するための機能を有している。 これは走行車を使用しないで、 走行車と電気的に等価な シミュレータ を構成し、ダイナミック な動作試験 を可能にしている。

4. 制御装置の特長

この制御装置の制御には、従来の車両制御と比べてつぎのような 大きな特長がある。

- (1) 推力機構ならびに走行車の速度検知を含め、すべて地上側で制御を行なら。
- (2) 走行車に推力を与える LIM に対し、走行車の位置に同期 した順序開閉制御が必要になる。
- (3) 走行車の走行抵抗が、LIM 発生推力のうちの加減速度として作用する推力よりも大幅に大きい。しかも、この走行抵抗は、大幅に変動し、かつ、不確定な要素が多い。

すなわち, 走行車の走行抵抗が,

- (a) 滑走走行抵抗(滑走走行区間): 約500 kg
- (b) 磁気 「ラグ (浮上走行区間): 約800 kg (最大) という値であるのに対し、加速 (減速) に要する推力は、約374 kg (加減速度3.5 km/h/s) と小さい。しかも、滑走走行抵抗は、晴・雨天で大幅に変動し、また、磁気 「ラグ は、浮上高さおよび速度によって大幅に変動する。

このため,走行抵抗の変動によって,走行車速度が変動する割合が非常に大きい。また,走行車を減速・停止させる場合でも,走行車に推進推力を与える必要がある。

(4) LIM 推力特性ならびに磁気 $\stackrel{\circ}{\sim}$ 特性が、負特性であり、速度制御としては、速度が発散してしまう方向にある。

すなわち,図 4. の推力特性において,供給電圧値が一定の場合,力行域の最大推力速度以下の速度領域においては,速度が上がれば,推力は大きくなり,速度がさらに上がる方向になる。また,逆相 ブレーキ 域においては,速度が上がれば,ブレーキ 推力は小さくなり,速度がさらに上がる方向になる。

また、図 8. の磁気 ドラグ特性においても、同じように速度が上がれば、磁気 ドラグは小さくなり、速度はさらに上がる方向になる。

したがって、つねに走行車の絶対速度を考慮した速度制御を行な うとともに、 制御 ゲイン をより適確なものにして、これらの負特性 を カバー しないと、速度追従制御特性が悪くなり、 場合によっては、 速度が発散して暴走または停止してしまう。

以上のような特長を考慮したこの制御装置の具体的な制御方式ならびに動作についてつぎに述べる。

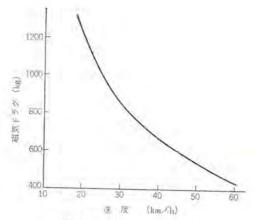


図 8. 磁 気ドラグ特性 Magnetic drag characteristic.

5. 制御方式ならびに動作

5.1 LIM 順序開閉制御

LIM の順序開閉制御とは、地上一次式リニアモータ 駆動方式において、必要電源容量を最小にするために、走行車の位置する近辺のモータ だけを励磁する制御である。

この制御装置においては、 サイリスタ 電源箱に 2 組の サイリスタ 電源 装置を設け、それぞれを、奇数番号 LIM 群専用、偶数番号 LIM 群専用にし、かつ、それぞれの電源装置は、LIM 1 台ずつを励磁する 容量を持たせてある。したがって、つねに 2 台の LIM が励磁され

るように、つぎに述べるような LIM 順序開閉制御を行なう。

との制御装置の LIM 順序開閉の基本論理は、「つねに走行車の位置する LIM と、その前方の LIM との 2 台を励磁する」というもので、具体的には、図 9. に示すように、LIM 両端に配置された位置検出器によって、走行車が一つの ϵ -g LIMi を通過し終ったことが検知され、LIMi を消磁し、進行方向に向かって、LIMi+2 の ϵ -g を励磁する方式である。なお、このとき、中間にある ϵ -g LIMi+1 は、励磁され続ける。

なお、このような LIM 順序開閉制御は、時間的に走行車速度と競合することになる。すなわち、走行車の LIM リアクション プレートの後部が、LIMi の \mathfrak{t} — \mathfrak{s} を通過し終ってから、LIM リアクション プレートの前部が、LIMi+ \mathfrak{s} の \mathfrak{t} — \mathfrak{s} に進入するまでの時間(\mathfrak{s} にMi+ \mathfrak{s} 用の接触器を開き、LIMi+ \mathfrak{s} 用の接触器を閉じて、LIMi+ \mathfrak{s} を定常状態にしておく必要がある。

したがって、LIM 接触器ならびにその駆動回路の動作時間は、 走行車速度を十分に考慮した値にしてある。

5.2 速度制御

制御装置の機能 ブロック 図を図 10、に示す。 自動運転走行の速度 制御の流れとしては、位置検出器よりの走行車位置情報を基にして、 走行車の位置ならびに速度を検知したうえ、走行パターンを考慮した 刻々の必要推力を演算し、 LIM 特性を 考慮してこの必要推力を電 圧値に換算し、 LIM に供給する電圧値を制御するもので、 可変電 圧制御である。

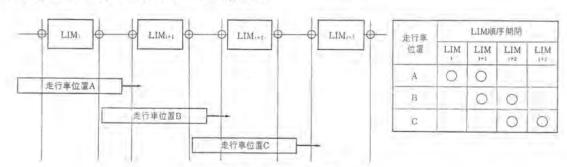


図 9. LIM順序開閉制御 Sequence control of LIM.

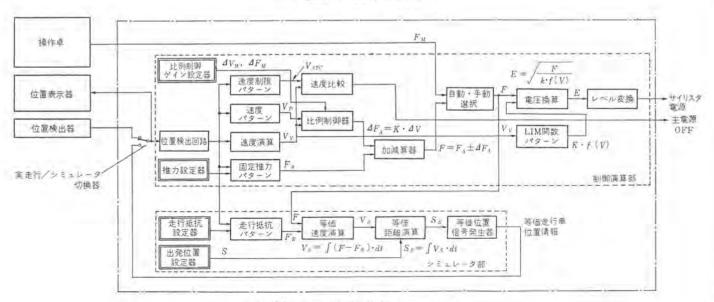


図 10. 制 御 装 置 機 能 ブロック 図 Function block diagram of control system.

5.2.1 速度検知

走行車速度は、走行車位置情報をもとにして走行車が各 LIM の 両端に取付けられた位置検出器の間を通過する時間を計測し、つぎ のような演算を行なって検知する。

走行車速度
$$V_V = \frac{S}{T}$$

ただし、 S: LIM 両端の位置検出器 2 点間の距離

T:LIM 両端の位置検出器 2点間の通過時間

したがって、得られる走行車速度は、位置検出器 2 点間の平均速 度である。

5. 2. 2 推力演算

自動運転走行に必要な刻々の推力は、走行パターン(図 3. 参照)に対応した固定推力パターンと、 走行パターン 速度と走行車速度とに偏差が生じたときに走行パターン に追従させるに必要な推力との 和にしている。

必要推力 $F=F_A+\Delta F_A$

ただし、 F_A :固定推力 パターン

 ΔF_A : 走行 パターン 追従推力

なお、上記の演算結果が、F>0 になれば、力行推力になり、F<0 になれば、逆相 ブレーキ 推力になる。

固定推力パターン F_A は、走行パターンに対応した加減速度ならびに走行抵抗を考慮した推力であり、推力設定器(ピッポード板)で各 LIM ごとに、任意の値に手動設定できるようにしている。これは、走行抵抗の大幅な変動、特に、晴天と雨天の違いによる滑走走行抵抗の変動などを、制御ゲインでnが一しようとすると、速度制御用に非常に高い制御ゲインが必要になり、制御が不安定になる。 そこで、定数的で、かつ、不確定要素の大きい滑走走行抵抗などの変動分については、あらかじめ固定推力パターンの段階で補正しておき、所要制御ゲイン幅を小さくして、制御を安定させるようにしている。 また、この固定推力パターンは、制御系の遅れ、制御誤差、その他の不確定要素などの定数的な変動分についても、補正することができる。

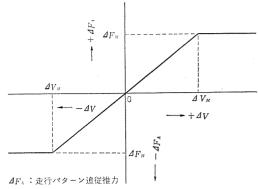
この固定推力パターンの方式は、この試験装置のように、不確定要素の究明を目的にしたものの制御方式としては適格であるといえる。なお、将来、固定推力パターン分に相当する変動分の変動傾向が明確に解析されれば、ピッポード板の手動設定によらず、内部で自動的に演算されて得られるパターンにすることができる。

固定推力 パターン
$$F_A = \alpha \cdot \frac{W}{G} + R$$

ただし、 α :加減速度

W: 走行車重量

R: 走行抵抗


走行 $パ_{S-v}$ 追従に必要な推力 ΔF_A は、走行 $パ_{S-v}$ 速度と走行車速度との偏差を変数にした比例制御によって決定する。このときの比例制御 $\emph{f1}_v$ は、 $\emph{f1}_v$ 設定器 (切換 $\emph{J1}_v$) により、 あらかじめ設定された、比例制御推力幅ならびに比例制御速度幅とによって自動的に決定される値である。(図 11. 参照)

速度偏差 $\Delta V = V_P - V_V$

速度 パターン 追従推力

 $|\Delta V| < \Delta V_M$ のとき $\Delta F_A = K_1 \cdot \Delta V$ $|\Delta V| \ge \Delta V_M$ のとき $\Delta F_A = \pm \Delta F_M$

比例制御 ゲイン $K_1 = \frac{\Delta F_M}{\Delta V_M}$

4V:速度偏差 **4F**_w:比例制御推力幅 **4V**_w:比例制御速度幅

図 11. 比例制御論理 Constant gain control.

ただし, V_P : 走行 パターン 速度

 V_{ν} :走行車速度

 ΔF_M : 比例制御推力幅

 ΔV_M : 比例制御速度幅

なお、上述の比例制御 f_{1} K_1 は、 負特性である磁気 F_{5} 特性 f_{5} f_{5} f_{5} 特性 f_{5} f_{5}

5. 2. 3 電圧値換算

LIM の推力と電圧との関係は、 $F=K_2\cdot f(v)\cdot E^2$ であるので、 つぎの演算を行なって、必要推力を電圧に換算している。

電圧指令値
$$E = \sqrt{\frac{F}{K_2 \cdot f(V_V)}}$$

ただし, F: 必要推力

 $K_2 \cdot f(V_{\nu})$: LIM 特性関数

上記における LIM 特性関数 $K_2 \cdot f(V_V)$ は,走行車速度 V_V ならびに LIM 種別 (A,B,C ϵ --タの種別)の関数であり, LIM 種別どとの近似式 β 2--シ として制御装置に内蔵されている。

なお、この電圧値換算の際、走行車速度を考慮に入れることにより、LIM 特性の負特性をカバーしている。

5.3 手動運転制御

操作卓よりの手動 ノッチ 指令に対応した手動推力 FM を、前述の 5. 2. 2 項で述べた必要推力 F に置き換えて制御する。

なお,手動運転制御は,自動運転制御に優先して動作するように してあり,自動運転中でも手動運転の割込みが可能である。また, 手動運転割込みののち,手動運転を解除すれば,自動的に自動運転 に復帰する。

5.4 過速度検知

走行中の誤操作,制御 げん および固定推力 パターン 値の不適合,機器の誤動作などから走行車が暴走するのを防止するための過速度検知は,制御装置に内蔵されている速度制限 パターン V_{ATC} (図 3. 参照) と走行車速度 V_{V} とをつねに比較していて, $V_{V} \geq V_{ATC}$ になったときに サイリスタ 電源をしゃ断し,走行車をだ行状態にする。

これにより,走行車は走行抵抗のみで減速するが,前述のように, 走行抵抗が非常に大きいので,あえて LIM による逆相 ブレーキ を作 用させなくても,確実に大きな減速度が得られる。また,通常走行 区間内に走行車が停止し得ない場合には,過走 ブレーキ 区間で,機械 的な過走 ブレーキ の作用によって十分に走行路内に停止できる よう に考慮してある。

6. シミュレータ

走行車を走行させずに走行車が走行したときと同一のダイナミックな制御動作を、制御装置全体に行なわせることができるシミュレータが、この制御装置に内蔵されている。

6.1 シミュレータの動作

図 10. に シミュレータ 部の機能 ブロック 図も併記してあるので、参照 されたい。

との走行抵抗パターンと、制御演算部で演算された必要推力との差を積分して等価速度を演算し、さらにこの等価速度を積分して等価 距離を演算する。

等価速度
$$V_S = \int (F - F_B) \cdot dt$$

等価距離
$$S_S = \int V_S \cdot dt$$

ただし、F:制御演算部で演算された必要推力

Fa: 走行抵抗 パターン

そして、この等価距離 S_S を走行路の位置検出器の位置に対応した等価走行車位置情報に変換し、制御演算部の位置検出回路に入力する。また、これらとは別に、出発位置設定器が設けられており、等価距離 S_S を任意の値に設定して、シミュレーション 時の等価的走行車位置を任意の位置に初期設定することができるようにしてある。

なお、等価走行車位置情報は、位置表示器にも入力されて、シミュ レーション 時の走行車位置が表示される。

6.2 シミュレータの用途

との シミュレータ の用途には、つぎのようなものがあり、 との試験 装置の目的に非常に有効であるといえる。

(1) 制御装置の動作チェック

走行試験開始前に、シミュレータで制御装置全体の ダイナミック な動作 チェック を行ない、試験準備状態を確認する。

(2) 運転操作の研修

走行車を走行させないで、 シミュレーション によって運転操作の研修 を行なうことができる。これは、とくに試験装置の実動初期の段階 で有効である。

(3) 走行抵抗の推測

実走行の後、シミュレーションで、実走行と同じような走行パターンになるように、走行抵抗設定器の設定値を調整し、このときの設定値より、走行抵抗の傾向ならびに値の概略が推測できる。

(4) 走行状態の予測

概略の走行抵抗値ならびに傾向がは(把)握できてたのち、その値 をもとにして走行抵抗設定器によって走行抵抗値を任意に変えても ミュレート すれば、 走行抵抗が変動した場合の走行状態を予測することができる。

(5) 計測機器の調整

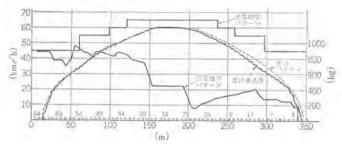
走行車速度・走行距離・LIM 供給電圧などの計測項目については、走行試験開始前に、シミュレーションを行なって計測機器の調整ができる。

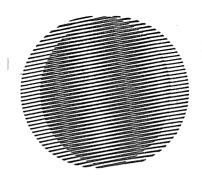
7. 現車試験結果

現事試験は、固定推力 パターン の値ならびに比例制御 ゲイン の値を 種々に変えて行なったが、最終的には図 12. に示すような結果が得 られた。

図 12. で、標準走行 パターン に対する速度追従性はよく、 この制 御装置の速度制御性能の良好であることが確認された。

なお、図12.の固定推力パターンの値は、推力設定器に設定された値であり、制御系の遅れならびに誤差なども考慮に入れて設定されたものである。したがって、この値と走行車速度(加速度・減速度)から割り出した値を、即走行抵抗値であるとはいえないが、制御系から見れば、等価的走行抵抗として扱うことができる。また、図12.の試験は、晴天時に行なわれたものであり、走行抵抗が大きいので、減速域においても、固定推力パターンの値は(+)側、すなわち力行推力になっている。



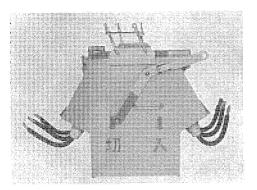

図 12. 走行試験結果 Data of running test.

8. to t 0

超電導電磁石の磁気反発力を応用して浮上走行する リニア インダクション モータ 車の制御方式について詳細に述べた。

この制御で、磁気浮上力のドラグ解析、非直線トルクを有するリニアイレダクションモータの推力制御、速度発電機の使用できない浮上車の速度検知方式、実験車とはいえ乗物としての速度保安機能、ならびに自動運転および手動運転での制御や操縦方式などの初めて直面した諸問題に解決を迫られた。また、現地で被制御対象の実体を補足する手段と、これを制御に直接フィードバックさせる手法の準備など、試験装置としての不確定要素にそなえた。

これらの諸問題については、国鉄を中心として、メーカ各社より編成されたプロジェクトチームの活動に助けられて無事責務を果すことができたことを付言し、謝辞にかえさせていただく。


新製品紹介

7.2 kV 屋外用手動式 高圧気中負荷開閉器

高圧配電線の柱上負荷開閉器としては、もっぱら油入開閉器が用いられてきたが、油の 劣化による爆発事故の心配があり、このような欠点のないものが望まれていた。これにこ たえるものとして、保守の省力化を兼ね備えた気中方式の三菱 PSL 形が開発された。

■ 標準仕様

形	名	PSL-2
準 拠 規 格		JIS C 4605
定 格 電 圧	(kV)	7.2
定格 電流	(A)	200
記 流 閉 閉 容 負 荷 電 流 ル ー ブ 電 流 励 電 電 電 充 電 電 電 コンデンサ 電流	(A)	200 200 5 30 30
開 閉 菸 命	電気的 (回) 機械的 (回)	200 3,000
定格短時間電流	(kA. 1 s)	8
定格投入電流	(B. kA)	20
絶 緑 階 級		6号A
定格周波 歡	(Hz)	50/60
総 肛 量	(kg)	約 69
操作方式		三極単投手動操作

PSL-2 形 7.2 kV 200 A 負荷開閉器外観

■ 用 途

高圧配電線や自家用高圧受電設備の区分開閉器として最適である。

■特長

(1) すぐれた気中負荷開閉方式

当社が SCL 形で長い製作経験をもつ、細げき(隙)形の消弧方式を採用しており、 また、この消弧板には消弧性がよく、温度・湿度による影響のない材料を使用しており、小形の消弧板にもかかわらず、すぐれた電流開閉能力をもっている。

(2) 確実な断路性能

「オイル レス」により、断路部の絶縁が気中で保たれ、安全・確実である。

(3) 入・切操作が スムース で確実

独得の トグル 機構によって ハンドル 操作速度には関係なく、 開閉器は早入れ・早切り動作し、 確実な開閉ができる。

(4) 安全性は抜群

鉄箱入りの気中方式なので、万一内部で短絡を起こしたと仮定しても、 上部 カバーの一部を変形させるだけで内部の ガス 圧力を逃がすように設計してあり、部品の飛散・落下がなく、公衆災害を防ぎ、安全である。

(5) 高い信頼性と長寿命

耐吸湿性にすぐれた良質な絶縁材料を使用しており、経年劣化がほとんどなく、長寿命である。

(6) 耐汚損・耐食性にすぐれている

充電部が露出しない構造と、すぐれた表面処理によって耐汚損・耐食性は抜群である。

(7) 保守・取扱いが簡単

新製品紹介

7.2 kV 屋内用 高圧断路器

フック 棒操作式断路器は VSA 形,DSE 形をはじめ数多く使用されてきたが, このたび, V 字形構造で,小形・軽量な DV 形断路器を製品化した。

■ 標準仕様

iii	番	形	名	定格電圧 (kV)	是格電流 (A)	定格短時間電流 (kA 1 秒)	絶級階級	準 拠 規 格	重 (kg)	
	1		nii.	17	7.2	200	10		JIS C 4606	1.5
-	2	DV	7.2	400	14	6 5 A	(1971)	1,5		

DV 形 断路器

■用途

キュービクル 式高圧受電設備 (JIS-C 4620) の断路器として最適である。

(1) V字形

V字形なので、小形で裏面接続も狭い スペース で可能である。

(2) 小形·軽量

ベース は アルミダイカスト で、小形の エポキシ 樹脂がいしとあいまって、 非常に小形・軽量である。

(3) 高信賴性

入位置では ラッチ で鎖錠されるので、振動や短絡電流の電磁力などで、 自然に開路する 心配がない。

(4) 取付が簡単

取付けが2箇所であるので、1本のアングル(山形鋼)でも取付けが可能である。

(5) 絶縁性優秀

信頼性の高い エポキシ 樹脂がいしを使用しており、安心できる。

(6) 定格電流 200 A, 400 A ともに同一寸法で、メッキ 処理が異るのみである。

[伊丹製作所]

本社・営業所・研究所・製作所・工場所在地

本 社 東京都千代田区丸の内2丁目2番3号(三菱電機ビル) (電 100) (電) 東京(03) 218局2111番

			-, -,		
大阪営業所	大阪市北区梅田町8番地(西阪神ビル	·) (= 530)	(電)	大 阪	(06) 343局1231番
名古屋営業所	名古屋市中村区広井町 3 丁目88番地 (大 名 古 屋 ビ ル	·) (55 450)	(電)	名古屋	(052) 565局3111番
静岡営業所	静岡市伝馬町16の3番地	(420)	(電)	静岡	(0542) 54局4681番
福岡営業所	福岡市中央区天神2丁目12番1号(天 神 ビ ル	v) (810)	(電)	福岡	(092) 721局2111番
長 崎 営 業 所	長崎市丸尾町7番8号(長崎底曳会館	g) (🐯 852)	(電)	長崎	(0958) 61局6101番
札 幌 営 業 所	札幌市中央区北2条西4丁目(北海 道 ビル	·) (ᡂ 060-9I)	(電)	札幌	(011) 212局3711番
仙台営業所	仙台市大町1丁目1番30号(新 仙 台 ビ ル	·) (980)	(電)	仙 台	(0222) 64局5611番
窗 山 営 業 所	富山市桜木町 番29号(明治生命館	(5 930)	(電)	富山	(0764) 31局8211番
広島営業所	広 島 市 中 町 7 番 32 号(日本生命ビル) (730)	(電)	.広島	(0822) 48局53日番
岡山営業所	岡山市駅前町1丁目 9 番地 15号 (明 治 生 命 ビル	·) (700)	(電)	岡 山	(0862) 25局5171番
高松営業所	高松市鶴屋町2番1号	(📆 760)	(電)	高 松	(0878) 51局0001番
新 潟 営 業 所	新潟市東大通 2丁目 4番地10号 (日本生命ビル	v) (950)	(電)	新 潟	(0252) 41局7212番
東京商品営業所	東京都港区赤坂2丁目5番1号(東 邦 ビ ル) (± 107)	(電)	東京	(03) 588局68日番
関東商品営業所	大 宮 市 大 成 町 4 丁 目 2 9 8 番 地	(ᡂ 330)	(電)	大 宮	(0486) 65局3211番
大阪商品営業所	大阪市北区堂島北町8番地の!	(530)	(電)	大 阪	(06) 344局1231番
名古屋商品営業所	名古屋市中村区広井町 3 丁目88番地 (大 名 古 屋 ビ ル	·) (450)	(電)	名古屋	(052) 565局3111番
福岡商品営業所	福岡市中央区天神2丁目!2番!号(天 神 ビ ル	·) (810)	(電)	福岡	(092) 721局2111番
札幌商品営業所	札幌市中央区北 2 条西 4 丁目 (北 海 道 ビ ル	~)(壶 060-91)	(電)	札幌	(011) 212局3777番
仙台商品営業所	仙台市大町I丁目I番30号(新 仙 台 ビ ル	v)(® 980)	(電)	仙台	(0222) 64局5611番
北陸商品営業所	金 沢 市 小 坂 町 西 97 番 地	(5 920)	(電)	金 沢	(0762) 52局1151番
広島商品営業所	広島市中町 7番32号(日本生命ビル	·) (〒 730)	(電)	広 島	(0822) 48局5311番
高松商品営業所	高松市鶴屋町2番1号	(西 760)	(電)	高 松	(0878) 51局0001番
東京機器営業所	東京都港区北青山 丁目 2 番 3 号 (青 山 ビ ル	·) (雹 107)	(電)	東京	(03) 404局0336番
大阪機器営業所	大阪市北区堂島北町8番地の!	(55 530)	(電)	大 阪	(06) 344局1231番
名古屋機器営業所	名古屋市中村区広井町 3 丁目88番地 (大 名 古 屋 ビル	·) (〒 450)	(電)	名古屋	(052) 565局3111番
静岡機器営業所	静岡市小鹿2丁目 番22号	(5 420)	(電)	静岡	(0542) 82局2061番
浜松機器営業所	浜松市海老塚町479の1	(a 430)	(電)	浜 松	(0534) 54局4121番
中央研究所	尼崎市南清水字中野80番地	(55 661)	(電)	大 阪	(06) 491局8021番
生産技術研究所	尼崎市南清水字中野80番地	(55 661)	(電)	大阪	(06) 491局8021番
商品研究所	鎌倉市大船2丁目14番40号	(a 247)	(電)	鎌倉	(0467) 44局6111番
神戸製作所	神戸市兵庫区和田崎町1丁目 1 番 2 号	(〒 652)	(電)	神戸	(078) 652局2121番
伊丹製作所	尼崎市南清水字中野80番地	(😇 661)	(電)	大 阪	(06) 491局8021番
三田工場		/			(07956) 3局4371番
• • • • • • • • • • • • • • • • • • • •	三田市三輪字父々部85番地	(669-13)	(電)	三田	(07914) 3局2221番
赤穂工場	赤穂市天和651番地	(〒 678-02)	(電) (電)	赤穂	
赤 穂 エ 場長 崎 製 作 所	赤 穂 市 天 和 6 5 1 番 地 長 崎 市 丸 尾 町 6 番 14 号	(〒 678-02) (〒 850-91)	(電) (電) (電)	赤 穂 長 崎	(0958) 61局6211番
赤 穂 エ 場 長 崎 製 作 所 時 津 エ 場	赤 穂 市 天 和 6 5 番 地 長 崎 市 丸 尾 町 6 番 4 号 長崎県西彼杵郡時津町浜田郷字神崎浦 5 7	(〒 678-02) (〒 850-91) (〒 851-21)	(電) (電) (電) (電)	赤 穂 長 崎 津	(0958) 61局6211番 (09588) 2局2461番
赤 穂 工 場 長 崎 製 作 所 時 津 工 場 稲 沢 製 作 所	赤 穂 市 天 和 6 5 番 地 長 崎 市 丸 尾 町 6 番 4 号 長崎県西彼杵郡時津町浜田郷字神崎浦 5 7 稲 沢 市 菱 町 番 地	((電) (電) (電) (電) (電)	赤 長 時 稲 部 津 沢	(0958) 61局6211番 (09588) 2局2461番 (0587) 32局8111番
赤 穂 工 場 長 崎 製 作 所 時 津 工 場 稲 沢 製 作 所 和 歌 山 製 作 所	赤 穂 市 天 和 6 5 番 地 長 崎 市 丸 尾 町 6 番 4 号 長崎県西彼杵郡時津町浜田郷字神崎浦 5 7 稲 沢 市 菱 町 番 地 和 歌 山 市 岡 町 9 番 地	(〒 678-02) (〒 850-91) (〒 851-21) (〒 492) (〒 640-91)	(電) (電) (電) (電) (電)	赤 長 時 稲 附 津 沢 山	(0958) 61局6211番 (09588) 2局2461番 (0587) 32局8111番 (0734) 36局2111番
赤 稳 工 場 長 崎 津 工 場 所	赤 穂 市 天 和 6 5 番 地 長 崎 市 丸 尾 町 6 番 4 号 長崎県西彼杵郡時津町浜田郷字神崎浦 5 7 稲 沢 市 菱 町 番 地 和 歌 山 市 岡 町 9 番 地 鎌 倉 市 上 町 屋 3 2 5 番 地	(〒 678-02) (〒 850-91) (〒 851-21) (〒 492) (〒 640-91) (〒 247)	(電) (電電電電) ((電電電電電電電電電電電電電電電電電電電	赤長時稲和鎌 穂崎津沢山倉	(0958) 61局6211番 (09588) 2局2461番 (0587) 32局8111番 (0734) 36局2111番 (0467) 44局1111番
赤 崎 建 工 作 工 作 工 作 工 作 工 作 工 作 工 作 工 作 工 的 型 製 製 作 所 的 動 質 優 製 使 作 所 所 所 所 所 所 所 所 所 所 所 所 所 所 所 所 所 所	赤 穂 市 天 和 6 5 1 番 地 長 崎 市 丸 尾 町 6 番 14 号 長崎県西彼杵郡時津町浜田郷字神崎浦517 稲 沢 市 菱 町 1 番 地 和 歌 山 市 岡 町 9 1 番 地 鎌 倉 市 上 町 屋 3 2 5 番 地 尼 崎 市 南 清 水 字 中 野 80 番 地	(〒 678-02) (〒 850-91) (〒 851-21) (〒 492) (〒 640-91) (〒 247) (〒 661)	(電) (電電) (電電で) (電電で) (電電) (電で)	赤長時稲和鎌大穂崎津沢山倉阪	(0958) 61局6211番 (09588) 2局2461番 (0587) 32局8111番 (0734) 36局2111番 (0467) 44局1111番 (06) 491局8021番
表 時 課 報 報 報 報 報 報 報 報 報 報 報 報 報 報 報 報 報 報	赤 穂 市 天 和 6 5 1 番 地 長 崎 市 丸 尾 町 6 番 14 号 長崎県西彼杵郡時津町浜田郷字神崎浦5 1 7 稲 沢 市 菱 町 1 番 地 都 加 歌 山 市 岡 町 9 1 番 地 爺 倉 市 上 町 屋 3 2 5 番 地 尼 崎 市 南 清 水 字 中 野 80 番 地 伊 丹 市 瑞 原 4 丁 目 1 番 地	(578-02) (578-02) (578-02) (579-02) (579-04) (579-04) (579-04) (579-04) (579-04) (579-04) (579-04) (579-04) (579-04)	(電) (() (() (() () () () () () () () () ()	赤長時稲和鎌大伊 歌 倫津沢山倉阪丹	(0958) 61局6211番 (09588) 2局2461番 (0587) 32局8111番 (0734) 36局2111番 (0467) 44局1111番 (06) 491局8021番 (0727) 82局5131番
表 時 深歌 倉信伊 歌 全 像 男 製 製 製 製 製 製 製 製 製 製 製 製 製 製 製 製 製 製	赤 穂 市 天 和 6 5 番 地 長 崎 市 丸 尾 町 6 番 14 号 長崎県西彼杵郡時津町浜田郷字神崎浦5 7 稲 沢 市 菱 町 番 地 和 歌 山 市 岡 町 9 番 地 鎌 倉 市 上 町 屋 3 2 5 番 地 尼 崎 市 南 清 水 字 中 野 80 番 地 伊 丹 市 瑞 原 4 丁 目 番 地 熊 本 市 竜 田 町 弓 削 7 2 0 番 地	(〒 678-02) (〒 850-91) (〒 851-21) (〒 492) (〒 640-91) (〒 247) (〒 661) (〒 664) (〒 862)	((((((((()))))()(((()))))))))	赤長時稲和鎌大伊熊 歌 會津沢山倉阪丹本	(0958) 61局6211番 (09588) 2局2461番 (0587) 32局8111番 (0734) 36局2111番 (0467) 44局1111番 (06) 491局8021番 (0727) 82局5131番 (0936) 38局7211番
長 稲和鎌通北 先恭 時沢歌 倉信伊 熊 製 製 製 製 製 製 製 製 製 製 型 工作工作作作作作 基 製 製 製 製 工作工作作作作作 工作	赤 穂 市 天 和 6 5 番 地 長 崎 市 東 東 尾 町 6 番 14 号 長崎県西彼杵郡時津町浜田郷字神崎浦 5 7 稲 沢 市 菱 町 番 地 和 歌 山 市 岡 町 9 番 地 雄 倉 市 上 町 屋 3 2 5 番 地 尼 崎 市 南 清 水 字 中 野 80 番 地 伊 丹 市 瑞 原 4 丁 目 番 地 熊 本 市 竜 田 町 弓削 7 2 0 番 地 名古屋市東区矢田町 18 丁目 番 地	(() () () () () () () () () () () () () (赤長時稲和鎌大伊熊 名穂崎津沢山倉阪丹本屋	(0958) 61局6211番 (09588) 2局2461番 (0587) 32局8111番 (0734) 36局211番 (0467) 44局1111番 (06) 491局8021番 (0727) 82局5131番 (0936) 38局7211番 (052) 721局2111番
長 稲和鎌通北 名旭恭 崎 決歌 倉信伊 熊 古 製 製 製 製 製 製 製 工 作工作作作作工 作工作工作所的所所所属的	赤 穗 市 天 和 6 5 1 番 地 長 崎 市 天 和 6 5 1 番 地 号 長崎県西彼杵郡時津町浜田郷字神崎浦 5 1 7 稲 沢 市 菱 町 1 番 地 地 部 倉 市 南 南 所 水 字 中 野 80 番 地 地 伊 丹 市 瑞 原 4 丁 目 1 番 地 伊 丹 市 竜 田 田 18 丁 目 1 番 地 名 古 屋 服 市 下 井 町 字 下 井	(() () () () () () () () () () () () () (赤長時稲和鎌大伊熊 名尾 歌 古張 古張	(0958) 61局6211番 (09588) 2局2461番 (0587) 32局8111番 (0734) 36局2111番 (0467) 44局1111番 (06) 491局8021番 (0727) 82局5131番 (0936) 38局7211番 (052) 721局2111番 (05615) 3局5101番
長 稲和鎌通北 名 旭恭 崎 沢歌倉信伊 店 岡 観 製 製 製 製 製 製 工 作 工 作 工 作 作 作 作 工 作 工 作 工	赤 穗 市 天 和 6 5 1 番 地 長 橋 市 天 和 6 5 1 番 地 号 長 橋 県西彼杵郡時津町浜田郷字神崎浦 5 1 7 稲 沢 市 菱 町 1 番 地 地 地 地 第 市 市 市 市 市 原 区 5 番 番 地 地 地 地 地 塔 府 市 竜 田 町 月 日 1 番 地 地 地 地 地 将 本 市 竜 東 区 5 番 地 地 地 地 地 本 市 竜 東 区 天 井 町 字 下 井 町 字 下 井 電 両 市 西 区 今 宿 青 木 6 9 0 番 地	(()()()()()()()()()()()()()()()()()()()	赤長時稲和鎌大伊熊名尾福歌 古張岡 古張岡大本屋旭今	(0958) 61局6211番 (09588) 2局2461番 (0587) 32局8111番 (0734) 36局2111番 (0467) 44局1111番 (06) 491局8021番 (0727) 82局5131番 (0936) 38局7211番 (052) 721局2111番 (05615) 3局5101番 (09295) 6局0431番
長 稲和鎌通北 名 旭福福赤崎 沢歌倉信伊熊古 岡山穗製 製製製製製製製製製製製製製製製製料工作工作作作作作工 作工作作作作作作作所 場所場所所所所場所場所場所所所	恭 穗 市 天 和 6 5 1 番 地 号 6 6 番 14 号 6 番 14 号 7 福 斯 月 8 日 14 号 15 日 1 日 1 日 1 日 1 日 1 日 1 日 1 日 1 日 1	((((((((((((()))))))))))))))))))))))))))	赤長時稲和鎌大伊熊 名尾福福歌 古張岡 古張岡	(0958) 61局6211番 (09588) 2局2461番 (0587) 32局8111番 (0734) 36局2111番 (0467) 44局1111番 (06) 491局8021番 (0727) 82局5131番 (0936) 38局7211番 (052) 721局2111番 (05615) 3局5101番 (09295) 6局0431番 (0849) 21局3211番
長 稲和鎌通北 名 旭福福相赤崎 沢歌倉信伊 古 岡山模穗製 製製製製 製製製製料工作工作作作作作工 作工作作作作系 縣 別場 製製製製料 製製製料 製料 製料 製料 製料 製料 製料 製料 製料 製料 製	恭長崎県西郷字神崎浦 5 1 7 地 地 号 6 6 7 平和 6 5 8 平	((((((((((((()))))))))))))))))))))))))))	赤長時稲和鎌大伊熊名尾福福相歌 古張岡 模穂崎津沢山倉阪丹本屋旭今山原	(0958) 61局6211番 (09588) 2局2461番 (0587) 32局8111番 (0734) 36局2111番 (0467) 44局1111番 (06) 491局8021番 (0727) 82局5131番 (0936) 38局7211番 (052) 721局2111番 (05615) 3局5101番 (09295) 6局0431番 (0849) 21局3211番 (0427) 72局5131番
長 稲和鎌通北 名 旭福福相赤崎 沢歌倉信伊 古 岡山模穗製 製製製 製 製製製料工作工作作作作作工作工作作作作系 縣 別場 製製製製製製製製製製製製製製製製製製製製製製製製製製製料 製料製料 製料	恭長崎県西郷字神崎浦 5 1 7 地 地 号 6 6 7 平和 6 5 8 平 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	((((((((((((()))))))))))))))))))))))))))	赤長時稲和鎌大伊熊名尾福福相姫穂崎津沢山倉阪丹本屋旭今山原路	(0958) 61局6211番 (09588) 2局2461番 (0587) 32局8111番 (0734) 36局2111番 (0467) 44局1111番 (06) 491局8021番 (0727) 82局5131番 (0936) 38局7211番 (052) 721局2111番 (052) 721局2111番 (05615) 3局5101番 (09295) 6局0431番 (0849) 21局3211番 (0427) 72局5131番 (0792) 23局1251番
長 稲和鎌通北 名 旭福福相姬赤崎 沢歌倉信伊 古 岡山模路穗製 製 製製製製製製製製製製製製製製製製製製製製製製製製製製製製製製製製製	恭長崎県西郷字神崎浦 5 1 7 地 地 号 6 5 1 番 1 4 1 5 1 7 地 地 号 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	((((()()(((((())))))))))))))))))))))))))	赤長時稲和鎌大伊熊名尾福福相姫静歌 古張岡 模臨崎津沢山倉阪丹本 屋旭今山原路岡	(0958) 61局6211番 (09588) 2局2461番 (0587) 32局8111番 (0734) 36局2111番 (0467) 44局1111番 (06) 491局8021番 (0727) 82局5131番 (0936) 38局7211番 (052) 721局2111番 (052) 721局2111番 (05615) 3局5101番 (0549) 21局3211番 (0849) 21局3211番 (0427) 72局5131番 (0792) 23局1251番 (0792) 85局1111番
長 稲和鎌通北 名 旭福福相姬静赤崎 沢歌倉信伊熊古 岡山模路岡穗製 製山 機丹本屋 製製製製製工作工作作作作作作工 作工作作作作作作	恭長崎県西郷字神崎浦 5 1 7 地地 地 地 号 6 5 1 番 14 5 1 7 地 地 場 5 6 番 15 1 7 地 地 地 地 地 地 地 地 地 地 地 地 地 地 地 地 地 地	((((()()((((((()))))))))))))))))))))))))	赤長時稲和鎌大伊熊名尾福福相姫穂崎津沢山倉阪丹本屋旭今山原路	(0958) 61局6211番 (09588) 2局2461番 (0587) 32局8111番 (0734) 36局2111番 (0467) 44局1111番 (06) 491局8021番 (0727) 82局5131番 (0936) 38局7211番 (052) 721局2111番 (052) 721局2111番 (05615) 3局5101番 (09295) 6局0431番 (0849) 21局3211番 (0427) 72局5131番 (0792) 23局1251番
長 稲和鎌通北 名 福福相姫静中赤 崎 沢歌 倉信伊 古 岡山模路岡津穂 製 製 製 製 製 製 製 製 製 製 製 製 製 製 製 製 製 製 製	恭長崎県西郷字神崎浦 5 1 4 4 5 1 7 地地 地 地 号 6 5 6 6 6 6 6 7 7 地地 地 地 地 地 地 地 地 地 地 地 地	(()()()()()()()()()()()()()()()()()()()	赤長時稲和鎌大伊熊 名尾福福相姫静中歌 古張岡 模 津穂崎津沢山倉阪丹本 屋旭今山原路岡川	(0958) 61局6211番 (09588) 2局2461番 (0587) 32局8111番 (0734) 36局2111番 (0467) 44局1111番 (06) 491局8021番 (0727) 82局5131番 (0936) 38局7211番 (052) 721局2111番 (05615) 3局5101番 (05615) 3局5101番 (0549) 21局3211番 (0547) 72局5131番 (0792) 23局1251番 (0792) 23局1251番 (0542) 85局1111番 (05736) 6局2111番
長 稲和鎌通北 名 福福相姫静中大赤崎 沢歌倉信伊 古 岡山模路岡津船穗 製 製 製 製 製 製 製 製 製 製 製 製 製 製 製 製 製 製 製	悲長崎県四郷字神崎浦 5 1 2 1 2 1 5 6 6 5 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	((((()()((((((()))))))))))))))))))))))))	赤長時稲和鎌大伊熊 名尾福福相姫静中鎌穂崎津沢山倉阪丹本 屋旭今山原路岡川倉	(0958) 61局6211番 (09588) 2局2461番 (0587) 32局8111番 (0734) 36局2111番 (0467) 44局1111番 (06) 491局8021番 (0727) 82局5131番 (0936) 38局7211番 (052) 721局2111番 (05615) 3局5101番 (05615) 3局5101番 (0547) 72局5131番 (0849) 21局3211番 (0427) 72局5131番 (0792) 23局1251番 (0792) 85局1111番 (05736) 6局2111番 (05736) 6局2111番
長 稲和鎌通北 名 福福相姫静中大郡赤崎 沢歌倉信伊熊古 岡山模路岡津船山穗 製 製製製製川製製工作工作作作作作作工作工作工作作作作作作工作工作作作作作作作系统 剝所場所所所所所易所場所場所所所所所所所	恭長橋 14 15 17 地地地地地地地地地地地地地地地地地地地地地地地地地地地地地地地地地	(()()()()()()()()()()()()()()()()()()()	赤長時稲和鎌大伊熊名尾福福相姫静中鎌郡・ 古張岡 模 津穂崎津沢山倉阪丹本屋旭今山原路岡川倉山	(0958) 61局6211番 (09588) 2局2461番 (0587) 32局8111番 (0734) 36局2111番 (0467) 44局1111番 (06) 491局8021番 (0727) 82局5131番 (0936) 38局7211番 (052) 721局2111番 (05615) 3局5101番 (05615) 3局5101番 (0549) 21局3211番 (0849) 21局3211番 (0427) 72局5131番 (0792) 23局1251番 (0792) 85局1111番 (05736) 6局2111番 (0467) 44局6111番 (0249) 32局1220番
長 稲和鎌通北 名 福福相姫静中大郡群赤崎 沢歌倉信伊熊古 岡山模路岡津船山馬穗製 製 製 製製製製 製製製製製工作工作作作作作作工作工作工作作作作作作作工作工作作作作作作作作	赤長長稲和鎌尾伊熊名尾福福相姫静中鎌郡縣區岡郡 和尾町町町32980番番番番番番番番番番番番番番番番番番番番番番番番番番番番番番番番番番番番	(578-02) (578-02) (5850-91) (()()()()()()()()()()()()()()()()()()()	赤長時稲和鎌大伊熊名尾福福相姫静中鎌郡尾穂崎津沢山倉阪丹本屋旭今山原路岡川倉山島	(0958) 61局6211番 (09588) 2局2461番 (0587) 32局8111番 (0734) 36局2111番 (0467) 44局1111番 (06) 491局8021番 (0727) 82局5131番 (0936) 38局7211番 (05615) 3局5101番 (05615) 3局5101番 (05615) 3局5101番 (0849) 21局3211番 (0849) 21局3211番 (0427) 72局5131番 (0427) 72局5131番 (05736) 6局2111番 (05736) 6局2111番 (05736) 6局2111番 (0467) 44局6111番 (0249) 32局1220番 (02765) 2局1111番
長 稲和鎌通北 名 福福相姫静中大郡群 京赤崎 沢歌倉信伊 古 岡山模路岡津船山馬 都穗 製 製山 機丹本屋 製製製製川製製製岡 製野工作工作作作作作工作工作工作作作作作作作作作作作作工作工格所場所易所所所所所所所所所所所所所所所所所所所所所所所所所所所所所所所所所所	赤長長稲 14 15 1 7 地地地地地地地地地地地地地地地地地地地地地地地地地地地地地地地地	(578-02) (578-02) (5850-91) (5850-91) (5850-91) (5850-91) (5850-91) (5850-91) (5850-91) (5860-91) (()()()())()()()()))())())())())())())()	赤長時稲和鎌大伊熊名尾福福相姫静中鎌郡尾藤穂)津沢山倉阪丹本屋旭今山原路岡川倉山島岡	(0958) 61局6211番 (09588) 2局2461番 (0587) 32局8111番 (0734) 36局2111番 (0467) 44局1111番 (06) 491局8021番 (0727) 82局5131番 (0936) 38局7211番 (05615) 3局5101番 (05615) 3局5101番 (05615) 3局5101番 (0542) 21局3211番 (0849) 21局3211番 (0427) 72局5131番 (0427) 72局5131番 (0542) 85局1111番 (05736) 6局2111番 (05736) 6局2111番 (05736) 6局2111番 (0249) 32局1220番 (02765) 2局1111番 (02765) 2局1111番
長 稲和鎌通北 名 福福相姫静中大郡群 京赤崎 沢歌倉信伊熊古 岡山模路岡津船山馬 都穗 製 製山 機丹本屋 製製製製川製製製 岡製工作工作作作作作工作工作工作作作作作作工作工作作作作作作所,場所場所所所所所所場所場所所所所所所所所所所	赤長長稲和鎌尾伊熊名尾福福相姫静中鎌郡縣區岡郡 和尾町町町32980番番番番番番番番番番番番番番番番番番番番番番番番番番番番番番番番番番番番	(()()()()()()()()()()())()()()()()()()()(赤長時稲和鎌大伊熊名尾福福相姫静中鎌郡尾藤京穂崎津沢山倉阪丹本屋旭今山原路岡川倉山島岡都	(0958) 61局6211番 (09588) 2局2461番 (0587) 32局8111番 (0734) 36局2111番 (0467) 44局1111番 (06) 491局8021番 (0727) 82局5131番 (0936) 38局7211番 (05615) 3局5101番 (05615) 3局5101番 (0849) 21局3211番 (0849) 21局3211番 (0427) 72局5131番 (0792) 23局1251番 (0792) 23局1251番 (05615) 85局1111番 (05615) 85局1111番 (0467) 44局6111番 (0249) 32局1220番 (02765) 2局1111番 (02742) 2局1185番 (075) 921局4111番

次 号 予 定

三菱電機技報 Vol. 48 No. 4

環境制御特集

《特集論文》

- 排水処理へのオゾンの適用
- ○産業排水の電解処理
- ○三菱オゾナイザ
- ○オゾンによる悪臭処理
- ○排オゾン処理
- ○下水の三次処理(東京都下水道局森ヶ崎処理場 (西)雑用水浄化施設)
- 水質監視テレメータシステム
- ○煙道ガス測定器 SA-302 形
- 有料道路料金所内の環境改善
- ○ビル管理法と集じん装置

《普通論文》

- 3.6~36 kV 大容量限流ヒューズ
- 名古屋市下水道局柴田処理場向け電気設備
- スペイン国鉄納め DC 3,000 V 269 系 電気機関 車
- 〇 スペイン国鉄納め DC 3,000 V 電車用電機品
- 〇 自動放送装置
- MELMIC によるタービン発電機軸振動監視装置

技術講座

○ 数値制御装置シリーズ (1) 数値制御装置の機 能について

三菱電機技報編集委員会

委員長	正木茂雌	常任委員	嬚	永		敦	
副委員長	神 崎 邇	"	痿		武	旭	
常任委員	伊藤 一夫	11	武	藤		Œ	
//	上田重夫	"	吉	松	誠	-	
"	字佐見重夫	委員	粕	谷	_	雄	
"	大 田 重 吉	"	坂	田	邦	寿	
11	北川和人	11	武	田	忠	夫	
11	古 賀 享	#	待	鳥		Œ	
//	外 野 範 吾	//	吉	武	E	彦	
-11	塚 本 信 雄	11/	若	宫	佐	Ξ	
"	久 松 章 三			(以上	50 音	順)	

三菱電機技報 48 巻 3 号

昭和49年3月22日印刷 昭和49年3月25日発行「禁無断転載」定価1部金200円(送料別)

編集兼発行人

東京都千代田区丸の内2丁目2番3号

正水茂雄

印刷所

東京都新宿区市谷加賀町1丁目12番地

大日本印刷株式会社

印刷者

東京都新宿区市谷加賀町1丁目12番地

高 橋 武 夫

発 行 所

東京都千代田区丸の内2丁目2番3号 (郵便番号 100)

三菱電機株式会社內 「三菱電機技報社」

(電話) (03) 218局 2323番

発 売 元

東京都千代田区神田綿町3丁目1番地(郵便番号101) 株式会社 オーム社書店 (電話) (03) 291局 0912番 振警口座 東京 20018番